
HP TestExec SL
Customizing HP TestExec SL

Notice
The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not be liable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19 (c) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
alterations is expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.
ii

n.

 in

her
This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporatio

Q-STATS II is a trademark of Derby Associates, International.

RoboHELP is a registered trademark of Blue Sky Software Corporation
the USA and other countries.

Printing History
E2011-90016 — Software Rev. 2.10 — Rev. D (current with Rev. D of ot

HP TestExec SL manuals) - First Printing - May, 1997

E2011-90020 — Software Rev. 3.00 — Rev. E - January, 1998
 iii

hich

e
ng a
About This Manual
This manual describes how to customize various aspects of HP TestExec SL,
such as creating custom operator interfaces, writing switching handlers from
scratch, customizing datalogging, and customizing online help.

Conventions Used in this Manual
Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions

Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

If a form uses tabs to organize its contents, the name of a tab may appear in
the hierarchy of menus and commands. For example, the Options dialog box
has a tab named Search Paths. A reference to that tab looks like this:

View | Options | Search Paths

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—i.e., MyFunction()—
that do not show the function’s parameters.

Some programming examples use the C++ convention for comments, w
is to begin commented lines with two slash characters, like this:

// This is a comment

C++ compilers also will accept the C convention of:

/* This is a comment */

The C++ convention is used here simply because it results in shorter lin
lengths, which make examples fit better on a printed page. If you are usi
C-only compiler, be sure to follow the C convention.
iv

Contents
1. Customizing the Operator Interface

About Operator Interfaces ..2
What is an Operator Interface?..2
Which Operator Interfaces are Provided? ...2
Why Customize an Operator Interface? ..2
Which Programming Languages Can I Use?3
What is the Best Way to Begin?..3
What Should an Operator Interface Look Like?3

Overview ..3
Know Your Audience...4
Keep the Appearance Simple ...4
What Level of Access Should Operators Have?5
Make the Layout Logical ...5
Interacting With Operators...7

Overview...7
Providing Useful Prompts & Status Information......................7
Minimizing Visual Clutter ..8
Making Messages Clear ..8
Preventing Common Errors Before They Occur.......................9
Using Shortcuts to Accommodate Different Styles9

What About Multiple Languages? ...10
What About Testing the Operator Interface?11

About Automation Interfaces ...12
What is an Automation Interface?...12
A Typical Scenario for an Automation Interface12
What Tasks Does an Automation Interface Do?13

Testing & Debugging an Operator Interface ..15
How Should I Test and Debug an Operator Interface?15
Using Sample Actions to Exercise an Operator Interface15

Operator Interfaces Created in Visual Basic ..16
What is the Standard Operator Interface in Visual Basic?17
How Much Visual Basic Do I Need to Know?18
How Does Visual Basic Interact with HP TestExec SL?18
What is Inside the HP TestExec SL Control?19
 Contents-1

6
6

9
1

2
43

8
8

Adding the HP TestExec SL Control to a Project 20
Getting Online Help for the Control ... 22
Finding Items in Operator Interface Code... 22
What is the Minimum Operator Interface to Run a Testplan? 22

Writing the Code for a Minimal Operator Interface 23
Why the Minimal Operator Interface is Not Enough................... 23

Understanding the HP TestExec SL Control’s States & Methods.... 24
Understanding the HP TestExec SL Control’s Events...................... 26

The Two Levels of Events... 2
Events Associated with Testplans.. 2
Events Associated with Individual Tests..................................... 29

About Test-Level Events.. 2
Miscellaneous Events... 3

Using the HP TestExec SL Control’s Events............................... 32
Understanding User-Defined Messages.. 32

Why Pass Information Between Processes?................................ 32
Passing Information Between Processes...................................... 33
User-Defined Messages Reserved by Hewlett-Packard............... 40

Accessing Hardware Resources from an Operator Interface............ 40
When Do Operator Interfaces Access Hardware Resources?...... 40
Accessing the Hardware Resources... 41

What About Concurrent Testing?... 4
Miscellaneous Notes...
Changing or Enhancing Existing Functionality................................ 44

Changing the Configuration of an Operator Interface................. 44
A Quick Way to Hide Existing Functionality.............................. 44
Controlling the Information That Appears in Reports................. 45

Accessing the Default Information... 45
What if Reports Need Additional Information?..................... 46
What if Reports Need Different Information?........................ 47

Changing the Language... 4
Which Languages Can I Use?... 4
Changing the Default Language... 48
Switching Among the Built-In Languages............................. 48
How Does Multi-Language Support Work?........................... 49
What About Languages That Are Not Built In?..................... 51
Adding Language Support for a New Control........................ 54
Adding Language Support for a New Message...................... 55
Contents-2

Contents

3
3

.68

3
4

75

8
8

0
0

1

Prompting a System Operator from HP TestExec SL..................56
Associating Testplans & UUTs with an Operator Interface59

Using Peripherals with Operator Interfaces62
Which Peripherals are Supported? ...62
The “One Peripheral Per Form” Convention...............................62
Using Bar Code Readers..6

About Bar Code Readers...6
Changing the Processing of Bar Codes...................................64
Testing the Code for Bar Code Readers..................................65

Operator Interfaces Created in Visual C++..67
What is the Standard Operator Interface in Visual C++?..................67
Inside an Operator Interface in Visual C++......................................68

Overview...
How the Operator Interface Requests Service.............................69
Accessing Global Data from the Operator Interface....................71
Interacting with the Test Sequencer...71

Creating an Operator Interface in Visual C++..................................72
Doing Specific Tasks with an Operator Interface in Visual C++......73

Responding to a “Run” Button...7
Beginning a Test Cycle..7
Displaying the Name of the Current Test.....................................75
Displaying the Testplan and Test Timing....................................75
Displaying Messages..
Beginning When the Testplan Name is Unknown.......................75

Creating an Automation Interface in Visual C++..............................76
Software Configuration for an Automation Interface..................76
Choosing a Task Model in Windows...76
Using a Bar Code Reader...7
Monitoring Test Results...7
Displaying Messages to the User Interface..................................79
Responding to Keyboard and Mouse Commands........................79
Generating Repair Information..8
Writing Repair Tickets...8
Signaling Downstream Devices...8
 Contents-3

7
97

00
2

6
7

Datalogging.. 81
LAN Communications ... 81
Dealing with Problems... 81

2. Creating a Hardware Handler

Writing a Hardware Handler .. 84
Modeling Your Hardware ... 84
Monitoring the Status of Hardware... 85
Creating a Project for the Hardware Handler.................................... 87

Setting the Path for Libraries ... 87
Setting the Path for Include Files... 88
Creating a New DLL Project ... 89
Specifying the Project Settings .. 89
Creating an Implementation File for the Hardware Handler 90
Writing the Routines for Functions in the Implementation File .. 91
Updating Dependencies ... 96
Verifying the Project’s Contents.. 9
Compiling the Project..
Copying the DLL to Its Destination Directory............................ 97

3. Customizing Datalogging

What Gets Logged?.. 1
Using Log Data with a Spreadsheet... 10

What is the Format for Spreadsheet-Compatible Log Data?.......... 102
Specifying What Appears in Log Data for Spreadsheets................ 104

4. Customizing Online Help

Why Should I Customize Online Help?... 10
How Do I Customize Online Help?.. 10

Index
Contents-4

1

Customizing the Operator Interface

This chapter describes how to customize the user interface that operators of a
test system use in a production environment. It also describes variations on
operator interfaces for test systems that control automation equipment.
1

Customizing the Operator Interface
About Operator Interfaces

ed in

nts.

ater

, to a
 test
rt

tion
tor

s
ple, a
About Operator Interfaces

What is an Operator Interface?

Typically, you do not want operators of a test system in a production
environment to access all the features that HP TestExec SL provides for
developing testplans. For example, you probably do not want to let operators
modify or delete the tests in a testplan. Or, your test system may need a
simplified user interface so that non-technical operators can use it. Any of
these variations on user interfaces intended to meet the needs of a specific
set of system operators is an “operator interface.”

Which Operator Interfaces are Provided?

HP TestExec SL comes with two working user interfaces, one written in
Visual Basic and one written in Visual C++, that are intended for use by
production operators of a test system. These “ready to run” operator
interfaces provide the basic control features and status information need
a typical production environment. You can use one of these example
operator interfaces as-is or customize it to meet your specific requireme

Specific features of the example operator interfaces are described in gre
detail later with related, language-specific topics.

Why Customize an Operator Interface?

Because its appearance and features define the tasks operators can do
large extent the operator interface dictates how operators interact with a
system. For example, a very simple operator interface might provide Sta
and Stop buttons as its only controls to deliberately limit operator interac
with a test system. It might include nothing more than a Pass/Fail indica
to provide status information if the operator’s task is simply to sort UUTs
into groups of those that pass versus those that fail.

However, an interface intended for more sophisticated operators, such a
those who do troubleshooting, probably needs more features. For exam
troubleshooter might need to know the name of the failing test and
2

Customizing the Operator Interface
About Operator Interfaces
information about how the test failed. Also, it might be useful to have an
option that lets troubleshooters rerun the test or halt on the point at which it
fails and manually take measurements with a DMM there.

Another good use for a custom operator interface is when you need to
support multiple languages. For example, you could create separate
interfaces for various languages or a single interface with an option that lets
operators choose their preferred language.

Which Programming Languages Can I Use?

HP TestExec SL lets you create custom operator interfaces in either
Microsoft Visual Basic or Microsoft Visual C++.1 Generally speaking, using
Visual Basic is the easier of the two. However, if you are familiar with
Visual C++ and MFC (Microsoft Foundation Classes), you may prefer to
develop operator interfaces in Visual C++.

What is the Best Way to Begin?

Regardless of which programming language you use, the best way to create
a custom operator interface is to begin with one of the working examples
provided with HP TestExec SL, and then customize it to meet your your
specific needs.

What Should an Operator Interface Look Like?

Overview

Effective operator interfaces seldom just happen. Creating an operator
interface can be analogous to writing a book insofar as designing an operator
interface is like starting with a clean sheet of paper upon which you can
write anything. In either case, you need to understand the needs of your
audience (users) and create a clear, well organized end product that is
appropriate for them. Time spent designing an operator interface that is easy

1. Besides Visual Basic, you can create an operator interface in any language
that generates a Windows DLL, but Visual C++ is the only one we
document.
 3

Customizing the Operator Interface
About Operator Interfaces

es. If

ps
 to

ind

will
to

m

 to

nts
to use will pay off in greater productivity and fewer errors by those who use
the test system.

If you are not starting from scratch—e.g., you already have an operator
interface that is used on other test systems—you have a couple of choic
desired, you can implement that interface as HP TestExec SL’s operator
interface. Or, you can break with tradition and design a new—and perha
easier to use—interface, especially if using HP TestExec SL causes you
move to the Windows platform and its conventions for user interfaces.

Something else you may want to consider is which other computer
applications the operators of your test system use. If they already are
familiar with another application, you can minimize operator training by
designing a custom operator interface that works in a similar, familiar
manner.

The next several topics describe design practices you should keep in m
when creating operator interfaces.

Know Your Audience

Be sure you know your intended audience. Are their skills nontechnical,
semitechnical, or technical? Are they computer literate? Do they have
enough familiarity with your product to understand product-specific
terminology?

If your operators are nontechnical or not computer literate, you probably
need different wording than if they are. For example, it may not be safe
assume they are familiar with Windows terminology. Also, avoid jargon.
Programmers might understand “Get the menu pick” but “Choose an ite
from the menu” would be more meaningful for most operators. When in
doubt, simplify, because even operators with technical skills are unlikely
complain that your operator interface is too easy to use.

Keep the Appearance Simple

When planning the visual appearance of an operator interface, be
conservative instead of making the interface fancy. Use large, legible fo
4

Customizing the Operator Interface
About Operator Interfaces

d

ies

nd
t

it the

m do
uld

ase.

eir

ems
sier
 and
e to
and minimize the use of color and graphics unless they contribute useful
information.

Making an operator interface too “busy” with numerous fonts, colors, an
graphics can impair its usability because visual clutter makes it overly
difficult for users to separate the significant from the insignificant.

Although it may seem that using all capital letters emphasizes text, stud
have shown that overuse of capital letters makes text significantly more
difficult to read. In fact, mixed-case characters increase reading speed a
comprehension from 14-20% over all capitals. Thus, we recommend tha
you use mixed case in most text that appears in operator interfaces. Lim
use of all capitals to items that truly need emphasis.

What Level of Access Should Operators Have?

Given that an operator interface’s features set the boundaries of what
operators can do with a test system, how much access to the test syste
you want any given user to have? For example, an operator interface co
let troubleshooters access a list of frequent failures and their causes.
However, you may or may not want to let troubleshooters edit that datab

In general, you should allow as much access as operators need to do th
jobs but probably no more than that. Instead of expecting operators to
remember which features to not use, you probably should create a specific
operator interface for each kind of user. Or, you could create a single
interface with multiple personalities and display only one of those
personalities at a time.

Make the Layout Logical

When laying out visual elements and controls, it helps to group related it
and arrange them in a logical flow of tasks. Not only does this make it ea
for operators to identify relationships, but it also reduces eye movement
hand movement when using a mouse. Also, try to group no more than fiv

Do this... Instead of this...
 5

Customizing the Operator Interface
About Operator Interfaces

t

se,
r’s
bits.
 top
e
f
seven items at a time because that works best for retention from short-term
memory. An example is shown below.

If your user interface must present a large number of features or a great deal
of information, consider grouping the groups of items into additional group.
Or, sidestep the problem with “information overload” by layering the
information onto tabbed dialog boxes similar to the way in which the righ
pane of HP TestExec SL’s Testplan Editor window is organized.

If your operator interface contains a series of tasks for operators—i.e.,
specify a part number, specify a run number, specify which testplan to u
press the Start button, etc.—make those tasks flow according to the use
expectations. Often, that expectation will be set by the user’s reading ha
For example, people who read in English read from left to right and from
to bottom. Thus, by default they tend to assume that a form “starts” at th
upper-left corner and “ends” at the lower-right corner, as shown below. I

Do this... Instead of this...
6

Customizing the Operator Interface
About Operator Interfaces

hat

n a
rt
f
d
you follow this model when designing an interface for English-speaking
operators, its users already will know something about using it.

If your intended audience is likely to assume a different model, then design
the operator interface to match their assumptions.

Interacting With Operators

Overview

An effective operator interface provides its users with useful status
information. For example, is the test system running or halted? What should
the operator do next? How much progress has been made on the current
task?

Providing Useful Prompts & Status Information

Ideally, your operator interface should prompt users when they need to do
something, and provide status information at all times. For example, if
testing is stopped the prompt might be “Press the Start button to begin
testing.” If a test is running, you could display a message that says
“Testing... Please wait” so operators will know what is happening and w
is expected of them.

Another possibility it to combine status and prompt information directly o
button. For example, you could include the name of the UUT on the Sta
button and label the button “Start testing XYZ,” where XYZ is the type o
UUT. Once testing begins, you could reprogram the button’s label to rea
“Testing XZY... Press to abort.”
 7

Customizing the Operator Interface
About Operator Interfaces

om
of the
t the

ful

ey

,

hen

s to
s
 or
Minimizing Visual Clutter

To reduce visual clutter—i.e., the presence of too many seemingly rand
elements on the screen at one time—you may want to reserve a region
operator interface to display status messages, such as in a status bar a
bottom of the form. That way, operators always know where to look for
status information.

Progress indicators, such as counters or graphical bars, are another use
way to keep users informed of what the test system is doing. This is
especially true if there are other tasks that users could be doing while th
wait for lengthy testplans to finish.

Adding a status bar or a progress bar can be as simple as dropping in a
control provided with a programming environment, such as Visual Basic
and writing code that interacts with that control.

Making Messages Clear

When displaying messages for users, make them direct and precise. W
offering choices, make it clear what the choices are and what they do.

Notice the differences between the two message boxes above. Without
providing any information, the box on the right asks if the operator want
quit. But which is the correct answer, OK or Cancel? Does OK mean it i
okay to continue or okay to quit? Does the Cancel button cancel running
cancel quitting?

Do this... Instead of this...
8

Customizing the Operator Interface
About Operator Interfaces

se
t to
In contrast, the message box on the left provides information about why the
box appeared and clear choices for what will be done if the operator presses
a button.

Preventing Common Errors Before They Occur

Where possible, you should design the operator interface to prevent common
errors as operators interact with it. For example, suppose operators need to
specify the part numbers of UUTs prior to testing them. Instead of having
operators enter the number via a keyboard, which is prone to error, you
could provide a predefined, drop-down list on the operator interface or use a
bar code reader to automate the process.

Another variation on the above is to let operators choose from predefined
buttons instead of typing a response. Not only does this improve accuracy,
but it usually is faster because it requires fewer actions. An example is
shown below.

Using Shortcuts to Accommodate Different Styles

Some operators may find using a mouse convenient, while others—
especially those with typing skills—may prefer using a keyboard. Becau
they provide keyboard equivalents for mouse commands, you may wan
use shortcuts called “keyboard accelerators” to accommodate both
preferences.

Do this... Instead of this...

Do this... Instead of this...
 9

Customizing the Operator Interface
About Operator Interfaces

es
ost

fy a
ator

ges.
or
ance

her
glish
f
 list
of
The Windows convention is that controls whose titles contain an underlined
character can be operated by pressing the Alt key while typing the
underlined character. The example below shows that the keyboard shortcut
for the Start button is Alt-S.

Another useful shortcut for those who prefer using a keyboard is to take
advantage of the “tab order”—i.e., the order in which the cursor advanc
from one control or field to the next when the Tab key is pressed—that m
programming environments let you specify when designing forms. Speci
tab order that matches the logical progression of tasks done in the oper
interface.

What About Multiple Languages?

It may be desirable for your operator interface to support multiple langua
If so, you must decide whether to have a separate version of the operat
interface for each language or a single operator interface whose appear
varies according to whichever language option is chosen for it.

Be aware that most text grow longer when translated from English to ot
languages. This means that if you develop operator interfaces for the En
language, you probably need to allow for the expansion or contraction o
text in labels or messages if they will be used with other languages. The
below shows the approximate size of a typical, nontechnical paragraph
English text translated to various languages.1

1. Source: George Sadek and Maxim Shukov, Typography Polyglot, New
York: The Cooper Union, 1991

Language Size Comparison with English (100%)

Arabic 88%

Chinese 61%

Czech 117%

Dutch 128%

Esperanto 93%
10

Customizing the Operator Interface
About Operator Interfaces

 a
time

What About Testing the Operator Interface?

Ultimately, the users of a test system will demonstrate how effectively your
operator interface is designed. Often, you can reduce your overall effort by
getting operators involved early. If possible, discuss their needs and
expectations, and ask them to evaluate an informal prototype—such as
sketch on paper—of your proposed operator interface. Remember that
spent designing a useful operator interface may very well be time saved
reworking an ineffective design later.

Farsi 100%

Finnish 104%

French 111%

German 109%

Greek 129%

Hebrew 83%

Hindi 91%

Hungarian 113%

Italian 110%

Japanese 115%

Korean 124%

Portuguese 110%

Russian 116%

Spanish 117%

Swahili 89%

Swedish 96%
 11

Customizing the Operator Interface
About Automation Interfaces

n

ing
s.

der,

es

ation

e,
and
About Automation Interfaces

What is an Automation Interface?

An automation interface is a variation on an operator interface that has
features to support a partially or fully automated production line. The
general approaches to production automation supported by HP TestExec SL
are:

• Centralized, in which a central computer controls the entire productio
line.

• Decentralized, or “peer-to-peer,” in which each machine in the
production line is responsible for its own part of the process, perform
a simple “hand-off” to the next machine when the current task finishe

Depending on your specific hardware and production environment, you
probably will use one of the following communication paths for the
automation interface:

• RS-232 serial interface port used to communicate with a bar code rea
other automation devices, or a central computer for control or for
gathering datalogging information.

• Digital I/O card for controlling relays and reporting the status of switch
and sensors.

• LAN interface by some chosen communications protocol.

A Typical Scenario for an Automation Interface

One example of how HP TestExec SL could operate as part of an autom
system is:

1. The HP TestExec SL system, under control of an automation interfac
waits for notification that a UUT has been placed on the tester fixture
is ready to test.
12

Customizing the Operator Interface
About Automation Interfaces

T

or).
2. The automation interface receives notification that a UUT is ready and
receives a UUT identifier (usually a serial number scanned by a bar code
reader).

3. The automation interface calculates from the identifier what type of UUT
is present and which testplan the UUT requires.

4. If the testplan is not already loaded or if a different testplan is required,
the automation interface loads the correct testplan.

5. The automation interface runs the testplan.

6. The automation interface determines the test results, including whether
the UUT passed, failed, or caused a system exception.

7. The automation interface passes information to the automation system
(whether that is a central computer or the next piece of automation
equipment in the production line). This could include pass/fail
information, repair ticket information, or datalogging information.

8. The interface waits for the next UUT to test or for a signal to shut down
the test system.

What Tasks Does an Automation Interface Do?

Potential automation tasks you should keep in mind when designing an
automation interface include:

• Displaying the system status to the user interface.

• Handling Windows-related events, such as any operator input by
keyboard or mouse.

• Synchronizing testing activities with automation events, such as “UU
ready for test” or “UUT test complete.”

• Obtaining board identification and type and use this information to
determine which testplan to run.

• Notifying automation equipment of the test outcome (pass, fail, or err
 13

Customizing the Operator Interface
About Automation Interfaces
• Recovering from errors that occur during automated testing.
14

Customizing the Operator Interface
Testing & Debugging an Operator Interface

d by

on

 to
 to

sting
 an

her
om

ans

d

Testing & Debugging an Operator Interface

How Should I Test and Debug an Operator Interface?

Thorough testing of an operator interface requires that you test every
possible interaction between the operator interface and HP TestExec SL.
This includes testing both HP TestExec SL’s responses to actions initiate
the operator interface, and the operator interface’s responses to events
triggered by HP TestExec SL. For example, if you press the Run button
an operator interace you expect HP TestExec SL to begin running the
currently loaded testplan. Also, if a testplan finishes running you expect
see a change in the status of the operator interface, such as a message
show whether the testplan passed or failed.

Testing how an operator interface handles errors is another aspect of te
and debugging. For example, an operator interface should not lock up if
instrument “times out” during testing. Also, an operator interface should
handle typical errors such as a missing or incorrectly named testplan eit
through error checking or through careful design to prevent the errors fr
occurring.

Using Sample Actions to Exercise an Operator Interface

HP TestExec SL provides an easy way to rapidly construct simple testpl
for exercising the functionality of an operator interface. Directory
“<HP TestExec SL home>\samples\uidebug” contains a basic set of action
definitions and their matching DLL that you can use to create passing an
failing tests, raise exceptions, and more. For more information about the
actions, use the Action Definition Editor or the Testplan Editor window to
browse their descriptions.
 15

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
Operator Interfaces Created in Visual Basic

Note The sample operator interface provided with HP TestExec SL that is created
in Visual Basic has some automation features built into it, while the sample
operator interface created in Visual C++ does not.

Note We recommend that you do not simultaneously run an operator interface
created in Visual Basic and the Test Executive environment used to develop
testplans. Running both at once can cause unpredictable behavior, conflicts,
and loss of data.
16

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

or
ject

”.
 but
on.
What is the Standard Operator Interface in Visual
Basic?

The sample operator interface created in Visual Basic 5.x, which is shown
below, provides a useful example for use as-is or with minimal
customization.

By default, it supports a bar code reader inserted inline with the keyboard
cable. It also supports other peripherals and options via configuration
settings described later under “Changing the Configuration of an Operat
Interface.“ You can find the code for the sample operator interface’s pro
ìn directory “<HP TestExec SL
home>\samples\VisualBasic\OperatorInterfaces\Typical”.

Note You can find the code for an even simpler operator interface ìn directory
“<HP TestExec SL home>\samples\VisualBasic\OperatorInterfaces\Simple
The simple example is a good tool for learning about operator interfaces
lacks the range of features and error handling needed in a real applicati
 17

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

cts

e of
ill

ad

L
m

 the

ith
How Much Visual Basic Do I Need to Know?

The topics in this section assume you are familiar with:

• Visual Basic 5.x terminology and concepts, such as events, methods,
properties, and event-driven programming

• Visual Basic 5.x’s integrated development environment, or IDE, which
provides the tools used to create, edit, and debug programming proje

• The use of ActiveX™ controls with Visual Basic 5.x

If your experience with Visual Basic is limited, you probably will want to
begin with simple customization tasks, such as changing the appearanc
an operator interface but not changing its underlying functionality. This w
help you become familiar with Visual Basic and with the sample code
provided with HP TestExec SL. As your proficiency with both grows, you
can begin doing more extensive customization tasks.

If you are new to Visual Basic programming, we recommend that you re
the Microsoft Visual Basic 5.0 Programmer’s Guide, which is available in
Visual Basic’s Books Online.

How Does Visual Basic Interact with HP TestExec SL?

Operator interfaces created in Visual Basic use a special HP TestExec S
ActiveX control to interact with HP TestExec SL. As shown in the diagra
below, code written in Visual Basic does the following:

• It calls the control’s methods to cause actions to occur, such as using
Run method to begin running a testplan.

• It uses the control’s properties to set or return attributes associated w
HP TestExec SL, such as using the DataLogDirectory property to
set or return the path used when datalogging during testing.

• It responds to events triggered by HP TestExec SL, such as the
AfterTestplanStop event that indicates a testplan has finished
running.
18

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

l’s
and

he
s.
What is Inside the HP TestExec SL Control?

The HP TestExec SL control is an automation object that contains additional
automation objects and collections of automation objects. The hierarchy of
internal objects and collections of objects is shown below.

Note The properties of the HP TestExec SL control’s internal objects do not
appear in Visual Basic's Properties window. You must browse the contro
online help to find descriptions of its internal objects and their properties
methods. Also, you can see them used in the sample operator interface
provided with HP TestExec SL.

Visual Basic’s Auto List Members feature provides an easy way to use t
internal objects without having to remember their properties and method

HP TestExec SL
ActiveX Control

Visual Basic code
in operator
interface

HP TestExec SL

properties

methods

events

TestExecSLn

RegisteredTestplans

Testplan

Symbols Symbol

RegisteredTestplan

Variants

ExecutionHistory

Preference

Revision

SymbolTables

Security

TopologyFileTopologyFiles

SymbolTestparmsTestTests

= collection

= object

SymbolTable

RegisteredUUTs RegisteredUUT
 19

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

 are

the

ted.

hich
As shown below, when you type a period after the name of an object, a list of
the object’s properties and methods appears in Visual Basic.

Here, the list for the Testplan object is shown. Among its other attributes
an Abort method and a CurrentTestCount property.

Adding the HP TestExec SL Control to a Project

Assuming that HP TestExec SL is installed on your system, you can do
following to add the HP TestExec SL control to your project:

1. Open an existing or a new project in Visual Basic

2. Choose Project | Components in Visual Basic’s menu bar.

3. When the Components box appears, be sure its Controls tab is selec

4. Choose the Browse button and locate the HP TestExec SL control, w
is in file “txslctl.ocx” in directory “<HP TestExec SL home>\bin”. When
20

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

u

l’s
e.
this file is selected, the HP TestExec SL control will appear in the list of
controls, as shown below.

5. Choose the OK button.

Once the HP TestExec SL control appears in Visual Basic’s Toolbox, yo
can use the mouse to place it on a form as you would any other control.
When copied onto a form, the control looks like this:

Note As shown below, you probably will want to set the HP TestExec SL contro
Visible property to False to keep the control from appearing at runtim
 21

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

te
nd

l

ting
Getting Online Help for the Control

You can invoke online help for the HP TestExec SL control by selecting the
control when it appears on a form and then pressing softkey F1.

Finding Items in Operator Interface Code

Given that the predefined operator interface provided with HP TestExec SL
will contain a great deal of unfamiliar code at first, how can you find items
of interest? Visual Basic’s Find feature (Edit | Find) makes it easy to loca
specified text in Visual Basic projects. The example below shows the Fi
feature being used to find occurrences of variable guLanguage in the
current code module.

Similarly, you can search (and replace, if desired) within the scope of a
procedure, a module, a project, or a selected region of code.

What is the Minimum Operator Interface to Run a
Testplan?

Running a testplan from an operator interface created in Visual Basic
requires nothing more than adding the HP TestExec SL control to Visua
Basic’s toolbox (see “Adding the HP TestExec SL Control to a Project”),
copying an instance of the HP TestExec SL control onto a form, and wri
two lines of code.
22

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ng

.
m

ator
time.

ful
uld
tion

n you
d a

need
vents
e
tes,
Writing the Code for a Minimal Operator Interface

The default name of the first instance of the HP TestExec SL control is
“TestExecSL1”. Given that, the minimum code needed to load and run a
testplan named “MyTestplan.tpa” looks like this:

When the form that contains the control is loaded, the control’s
LoadTestplan method is called and passed the pathname of an existi
testplan to load. After the testplan has been loaded, a call to the Run method
associated with the control’s Testplan object runs the testplan.

Why the Minimal Operator Interface is Not Enough

Although the example above works, it provides very limited functionality
For example, there is no error trapping routine to handle a simple proble
like not finding the testplan at its specified location. Also, this operator
interface provides no pass/fail status information, nor does it let the oper
load and run a different testplan, or even the original testplan a second

Note Despite the minimal operator interface’s lack of features, it can be a use
tool for learning about the HP TestExec SL control. For example, you co
have the minimal operator interface run a testplan containing a single ac
that displays a message box to indicate that the testplan is running. The
could add Run and Stop command buttons to the operator interface, ad
text box to display the testplan’s status, etc.

The more extensively you customize operator interfaces, the better you
to understand the HP TestExec SL control’s methods, properties, and e
so you can use them programmatically. Also, you need to understand th
various “states” of execution through which HP TestExec SL moves. Sta
methods, and events are described in more detail below.
 23

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ach
Understanding the HP TestExec SL Control’s States &
Methods

As it loads, runs, and unloads testplans, HP TestExec SL moves through
various “states” of execution identified by boxes in the diagram below. E
box contains one or more states; e.g., the first state is NoTestplan, the
second is TestplanNotRun, and the third is TestplanRunning.

NoTestplan

TestplanNotRun

TestplanRunning

TestplanPaused
TestplanBreakPoint
TestplanStepPause

TestplanError
TestplanAbort

TestplanStopped
TestplanPassed
TestplanFailed

TestplanException
TestplanUnhandledException

LoadTestplan

Run or Step or Continue

Run to
breakpoint

SteppingPause

Stop or Abort

Run to
completionStop or Abort

LoadTestplan (forces
UnloadTestplan)

LoadTestplan (forces
UnloadTestplan)

Run or
Step or

Continue
24

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ther.

 in
HP TestExec SL moves from one state to another by either the normal
sequence of execution or by calling methods in the HP TestExec SL control.
For example, calling the LoadTestplan method causes HP TestExec SL
to load a testplan and move from the NoTestplan state to the
TestplanNotRun state. The names of methods are italicized in the
diagram.

Some boxes contain more than one state. For example, the fourth box from
the top contains TestplanPaused, TestplanBreakPoint, and
TestplanStepPause. This means that any of these states is possible at
this point in the flow of testing.

Which state actually occurs depends upon how this point is reached. For
example, calling the Pause method while in the TestplanRunning
state moves to the TestplanPaused state. Similarly, single-stepping
while in the TestplanRunning state moves to the
TestplanStepPause state because HP TestExec SL pauses after each
step.

The associations between related states and methods are easy to identify
because of the similarities in their names. For example, if HP TestExec SL is
in the TestplanRunning state, then:

• Calling the Stop method moves to the TestplanStopped state

• Calling the Abort method moves to the TestplanAborted state

Notice the three labels that are underlined in the diagram: Stepping, Run to
breakpoint, and Run to completion. Instead of being methods, these are
normal paths of execution that result in movement from one state to ano
For example, if a testplan executes without the number of failing tests
exceeding the specified limit1, it moves from the TestplanRunning
state to the TestplanPassed state.

Also notice the two cases in which calling the LoadTestplan method
causes an automatic call to the UnloadTestplan method because the
current testplan must be unloaded before loading a different one. These

1. This limit is set by the “Halt on failure count” feature on the Execution tab
the right pane of HP TestExec SL’s Testplan Editor window.
 25

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

seful
d,
 of

tion

 a

h
plan
er,
occur when moving from TestplanNotRun to NoTestplan and from
any of the states in the lowermost box to the NoTestplan state.

In some cases, any of several methods can cause movement from one state to
another. For example, calling either the Run, Step, or Continue method
causes movement from the TestplanNotRun state to the
TestplanRunning state.

Understanding the HP TestExec SL Control’s Events

The Two Levels of Events

The HP TestExec SL control can trigger two levels of events in response to
changes of state in HP TestExec SL. The first type is testplan-level events
that are global to a testplan and always enabled, which means they
potentially trigger each time a testplan is run.1 The second level is test-level
events, whose scope is individual tests and whose triggering you can enable
or disable programmatically.

Why have two levels of events? Testplan-level events let an operator
interface respond to major changes in a testplan’s status. They provide u
status information without significantly slowing testing. On the other han
test-level events provide a greater level of resolution but at the expense
increased testing time.

Events Associated with Testplans

At various points when HP TestExec SL moves from one state of execu
to another, the HP TestExec SL control triggers events you can use to
execute routines written in Visual Basic. For example, there is an
AfterTestplanPause event for which you could write code to change
status message in an operator interface from “Running” to “Paused” in
response to a call to the Pause method, upon reaching a breakpoint set in
the testplan, or while single-stepping. The diagram below shows
testplan-level events as arrows with double heads that are hollow.

1. We say “potentially” because not every event will necessarily trigger eac
time a testplan is run. For example, an event that triggers when the test
pauses will not trigger unless the testplan is deliberately paused. Howev
all of these events are enabled to trigger at the appropriate time.
26

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
NoTestplan

TestplanNotRun

TestplanRunning

TestplanPaused
TestplanBreakPoint
TestplanStepPause

TestplanError
TestplanAbort

TestplanStopped
TestplanPassed
TestplanFailed

TestplanException
TestplanUnhandledException

LoadTestplan

Run or Step or Continue

Run to
breakpoint

SteppingPause

Stop or Abort

Run to
completionStop or Abort

LoadTestplan (forces
UnloadTestplan)

LoadTestplan (forces
UnloadTestplan)

Run or
Step or

Continue

AfterTestplanUnload

BeforeTestplanBegin

BeforeTestplanLoad

AfterTestplanLoad

AdviseClearReport

ReportMessage

AfterTestplanStop

AfterTestplanPause

ReportMessage

various
test-level events

Test1

Testn
 27

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
Listed in alphabetical order, the testplan-level events are:

Note You can find detailed descriptions of these events in the online help for the
HP TestExec SL control.

Notice that some states have more than one event associated with them. For
example, the TestplanRunning state has the AdviseClearReport,
ReportMessage, and BeforeTestplanBegin events associated with
it. When there are multiple events, the events trigger in the order shown
from top to bottom.

Most calls that cause a transition from one state to another return
immediately; i.e., they are non-blocking. This means that in most cases you
can think of testplan-level events as triggering immediately after the call.

AdviseClearReport Indicates that report output is being cleared at
the beginning of a run of the testplan. Typically
triggers once at the beginning of a run of the
testplan, even if the testplan will loop.

AfterTestplanLoad Indicates that a new testplan has successfully
been loaded.

AfterTestplanPause Indicates that HP TestExec SL has entered a
paused state, and returns the reason why the
testplan paused.

AfterTestplanStop Indicates that HP TestExec SL has halted, and
returns the reason why the testplan stopped.

AfterTestplanUnload Indicates the testplan has been unloaded.

BeforeTestplanBegin Indicates that a pass through the testplan
sequence is about to begin. Also occurs when
testplan execution resumes via calling the
Continue method.

BeforeTestplanLoad Triggered in response to a LoadTestplan
method.

ReportMessage Indicates a new "block" of report output has
arrived.
28

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
For example, calling the Run, Step or Continue methods immediately
triggers an AdviseClearReport method just prior to moving
HP TestExec SL from the TestplanNotRun state to the
TestplanRunning state.

The LoadTestplan method is an exception to the above. When called, it
blocks until its action is complete. This means that the
BeforeTestplanLoad and AfterTestplanLoad events trigger in
the order shown sometime during the call to LoadTestplan, but before
HP TestExec SL enters the TestplanNotRun state.

Events Associated with Individual Tests

About Test-Level Events

Test-level events are triggered as the status of testing changes from test to
test within a testplan. As shown in the expanded view of the
TestplanRunning state below, test-level events are associated with the
 29

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
beginning and end of individual tests during the TestplanRunning state
of execution.

Listed in alphabetical order, the test-level events are:

By default, test-level events are disabled. You enable the AfterTestDone
and BeforeTestBegin events by setting the value of the
TestEventsEnabled property in the HP TestExec SL control to True.
This lets the code in an operator interface or automation interface take some
kind of action before and after the running of each test.

AfterTestDone Triggered after the current test finishes
executing.

BeforeTestBegin Triggered before the next test in the testplan
begins executing.

ReportMessage Indicates a new "block" of report output has arrived.

Run or Step or Continue

Run to
breakpoint

SteppingPause

BeforeTestBegin

ReportMessage

AfterTestDone

TestplanRunning

Test1

Testn

BeforeTestBegin

ReportMessage

AfterTestDone

.

.

.

30

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

e

s
ot
g is

the

ous
nts.

the
es”
The test-level ReportMessage events trigger under either of the
following conditions:

• Passing or failing tests occur and the value of the ReportPass and/or
the ReportFail property in the HP TestExec SL control is set to Tru

• An exception occurs and the value of the ReportExceptions
property in the HP TestExec SL control is set to True

Caution Enabling test-level events slows testing because it takes time to proces
events and broadcast them to their recipients. Thus, you probably will n
wish to use test-level events when testing times are short or when timin
critical.

Note You can find detailed descriptions of these events in the online help for
HP TestExec SL control.

Miscellaneous Events

The HP TestExec SL control provides a couple of additional, asynchron
events that do not fall into the category of testplan-level or test-level eve
They are:

You can find more information about these events in the online help for
HP TestExec SL control. Also, see “Understanding User-Defined Messag
for more information about user-defined messages and “Miscellaneous
Notes” for more information about using the AdviseUpdate event.

AdviseUpdate Triggers to let the operator interface
update its display in a way that does not
interrupt the critical timing of a testplan.

UserDefinedMessage Triggers to notify the operator interface
that a user-defined message has
arrived.
 31

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

e of

s
Using the HP TestExec SL Control’s Events

As shown below, once you have created an instance of the HP TestExec SL
control on a form,1 you can:

1. Use the Object box in Visual Basic’s Code window to choose the nam
an instance of the HP TestExec SL control.

2. Use the Procedure/Events box to choose a specific event and add it
declaration to the form.

3. Write code to implement what happens when the event is triggered.

An example of doing this is shown below..

1. The sample operator interface provided with HP TestExec SL has the control
on “frmMain”.

Understanding User-Defined Messages

Why Pass Information Between Processes?

An operator interface written in Visual Basic executes apart from
HP TestExec SL, which means that it and HP TestExec SL reside in separate
processes. Interaction between these processes is handled by the

1. Choose an instance of the control 2. Choose an event

3. Write implementation code for the event
32

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

 of

 SL

efined
w

nd
ents

xec
,

d

ait
”

,
xec
t a

, the
t is.
r of
HP TestExec SL control, which passes messages back and forth. Examples
of the kinds of message passed include:

• Messages that originate in HP TestExec SL and cause the triggering
events in the HP TestExec SL control in Visual Basic

• Messages that originate in Visual Basic and are sent to HP TestExec
when you call methods in the HP TestExec SL control

Because the HP TestExec SL control passes these messages in a pred
manner, you are not necessarily aware of them. Nor do you need to kno
anything about their contents. All you see is the results.

But what happens if you need to pass information between processes a
none of the predefined messages—i.e., the HP TestExec SL control’s ev
and methods—is appropriate? For example, suppose you need to:

• Have an action written in C that is executing in a testplan in HP TestE
SL invoke a dialog box in an operator interface written in Visual Basic
and

• Wait for a "Yes/No" response from the operator of the test system, an

• Return the operator’s reply to the action.

However, the HP TestExec SL control has no “Display a dialog box and w
for a reply” event, nor does it have a “Return a reply from the dialog box
method.

Passing Information Between Processes

Instead of providing a large number of very specific predefined functions
events, and methods to pass information between processes, HP TestE
SL supports a more flexible approach called “user-defined messages.” A
conceptual level, user-defined messages work like this:

• A call to the appropriate API function or method broadcasts a
user-defined message to potential listeners. Besides containing data
message contains an identifier that identifies what kind of message i
For example, you might choose a convention that defines an identifie
 33

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ase,

s 5,
, it

ves
takes
5 for messages sent from an action to an operator interface that mean
“display a dialog box.”

• Potential listeners receive various user-defined messages. In each c
they evaluate the message’s identifier to decide if the message is of
interest. Continuing with the example of a message whose identifier i
when the operator interface receives a message whose identifier is 5
displays a dialog box in response. When the operator interface recei
other messages whose identifiers are not 5, it either ignores them or
some other action appropriate for their identifiers.
34

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

tion
ard.
You use the following functions, events, and methods to send, receive, and
respond to user-defined messages.1

a. With the exception of AdviseUserDefinedMessage(), these functions are
part of the C Action Development API.

1. See “User-Defined Messages Reserved by Hewlett-Packard” for informa
about the range of message identifiers reserved for use by Hewlett-Pack

Functions for use in code written in Ca

UtaSendUserDefinedMessage() An API function used in actions to
broadcast a message to all potential
listeners and does not wait for a
response

UtaSendUserDefinedQuery() An API function used in actions to
broadcast a message to all potential
listeners and wait for a response

UtaSendUserDefinedResponse() An API function used in actions to
respond to user-defined messages

AdviseUserDefinedMessage() A function used in hardware handlers
to respond to user-defined messages

Events and methods for use in code written in Visual Basic

SendUserDefinedMessage Method that broadcasts a message to
all potential listeners and does not wait
for a response

SendUserDefinedQuery Method that broadcasts a message to
all potential listeners and waits for a
response

SendUserDefinedResponse Method that responds to a
user-defined message broadcast by
SendUserDefinedQuery

UserDefinedMessage Event that indicates a user-defined
message has arrived
 35

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
Notice the parallels between the names and functionality of the functions
and methods listed above. The C Action Development API has a set of
functions that follow its conventions, and the Visual Basic environment its
counterparts. Although you typically broadcast user-defined messages from
one environment and listen or respond from another, there is nothing to
prevent sending and receiving user-defined messages in the same
environment.

Consider the following example of how a user-defined message might work.

Here, an action in a test executing in a testplan running in HP TestExec SL
broadcasts a user-defined message to an operator interface, which then
displays the message in a text box if the message is of interest.

HP TestExec SL

MyTestplan

MyTest

MyAction
Text Box

Operator Interface

UtaSendUserDefinedMessage() UserDefinedMessage()broadcast
36

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
The pertinent code to do this inside an action routine, which uses a call to the
UtaSendUserDefinedMessage() function, might look like this:

// Code in action routine written in C...
UtaSendUserDefinedMessage(5, "Hello from an action!");
// More code in action routine...

The code in the operator interface written in Visual Basic might implement
the UserDefinedMessage event, which responds to user-defined
messages, like this:

’Code in operator interface written in Visual Basic
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _

As String)
Select Case ID’Evaluate the identifier

Case 5 ’The message is of interest
txtMyTextBox.Text = TextBlock

Case Else ’The message is not of interest
Exit Sub

End Select
End Sub

Besides evaluating ID, you could evaluate the message contained in
TextBlock. For example, you could have ID identify a general class of
messages, and TextBlock to carry the data associated with a specific
message, as shown next.

// Code in action routine written in C...
// An ID of 2 is a pass/fail status message for a voltage measurement
if (Voltage > 5)

UtaSendUserDefinedMessage(2, "passed");
else

UtaSendUserDefinedMessage(2, "failed");
// More code in action routine...
 37

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

n

’Code in operator interface written in Visual Basic...
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _

As String)
Select Case ID’Evaluate the identifier

Case 2 ’The message is of interest
If (TextBlock = "passed") Then ’Evaluate the TextBlock

txtTextBox.Text = "Voltage test passed"
Else

txtTextBox.Text = "Voltage test failed"
Exit Sub

End If
End Select

End Sub

Similarly, TextBlock could contain other readable text, numeric data, or
even patterns of bits for evaluation. Instead of writing a string to a text box,
the code in the operator interface could do other tasks requested by action
code executing in HP TestExec SL.

Note An important concept to understand about user-defined messages is that they
are broadcast to one or more potential recipients, or “listeners,” who must
parse the messages to decide if their contents are of interest.

All of the examples so far have broadcast a message with no regard for
whether the message was received or acted upon. Another variation on
user-defined messages, which is shown below, lets you use the
UtaSendUserDefinedQuery() function to broadcast a message to a
intended recipient, and wait a specified length of time for the recipient to
respond via a call to the HP TestExec SL control’s
SendUserDefinedResponse method.

HP TestExec SL

MyTestplan

MyTest

MyAction Text Box

Operator Interface

UtaSendUserDefinedQuery()
SendUserDefinedResponse()query

response
38

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

r

An example of code that does this is shown next.

// Code in action routine written in C...
// ID is 4 and timeout value is 2 seconds
if (UtaSendUserDefinedQuery(4, "Waiting for a response", 2) != NULL)

...code that does some task if response is received
else

// exceeded time-out value or an error occurred
// More code in action routine...

The code in the operator interface might respond to a user-defined query like
this:

’Code in operator interface written in Visual Basic...
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _

As String)
Select Case ID’Evaluate the identifier

Case 4 ’The message is of interest & requires a response
TestExecSL1.SendUserDefinedResponse 4, "Received your query"

Case Else ’The message is not of interest
Exit Sub

End Select
End Sub

Note You must use user-defined queries and responses as complementary pairs;
e.g., you cannot use the SendUserDefinedMessage method to respond
to a message broadcast by the UtaSendUserDefinedQuery()
function.

The examples have shown user-defined messages and queries being sent
from code in actions to operator interfaces, and user-defined responses being
sent from operator interfaces to code in actions, but the opposite is possible.
For an example, see “Accessing Hardware Resources from an Operato
Interface.”

Note You can find detailed descriptions of the C Action Development API
functions in Chapter 2 of the Reference book and in HP TestExec SL’s online
help. You can find detailed descriptions of the Visual Basic events and
methods in the online help for the HP TestExec SL control.
 39

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

s

are

r

st
User-Defined Messages Reserved by Hewlett-Packard

Hewlett-Packard has reserved numbers in the range of 10,000 to 99,999 for
predefined user-defined messages used in operator interfaces provided with
HP TestExec SL. If an existing message is appropriate for your use, feel free
to reuse it. If you add new messages, be sure to add them somewhere outside
the predefined range to avoid conflicts with operator interfaces from
Hewlett-Packard.

Browse the code in “frmPreDefinedTxSLUserMessages” in the sample
operator interface for current definitions of the reserved messages.

Accessing Hardware Resources from an Operator
Interface

Note For an overview of hardware handlers, which are mentioned in the topic
below, see “About Hardware Handlers” in Chapter 3 of the Getting Started
book. Also, see “Monitoring the Status of Hardware” in Chapter 2 of this
book.

When Do Operator Interfaces Access Hardware Resources?

Under what conditions does an operator interface need to access hardw
resources, such as an I/O port that controls equipment or returns status
information? Suppose that:

• You must have a safety shield in place before applying power to the
UUT. The shield probably will have a safety interlock switch or senso
whose status your operator interface needs to know before it allows
testing to begin.

• You want operators to control testing by pressing large, mechanical
buttons marked Start and Stop on a separate “button box” near the te
system instead of via graphical buttons on the operator interface.

• You want your operator interface to control colored lamps or other
indicators that indicate the status of testing.
40

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

t

s to

ace

d

u
uilt
y

ring
de to

fined
y
nse,
• Your operator interface needs to control automated equipment withou
operators being present.

The alternatives when an operator interface written in Visual Basic need
interact with hardware in typical scenarios like these are:

• The Visual Basic code in your operator interface can directly interact
with hardware via an I/O strategy that is unique to the operator interf

• The Visual Basic code in your operator interface can interact with
HP TestExec SL, which in turn interacts with hardware via its standar
I/O strategy

For an operator interface written in Visual Basic, we recommend that yo
adopt the latter approach via the support for hardware handlers that is b
into HP TestExec SL. See the sample code and “readme” file in director
“<HP TestExec SL home\samples\automate” for an example of a hardware
handler that supports digital I/O operations.

Accessing the Hardware Resources

One way an operator interface can access hardware resources is by
broadcasting a user-defined query to a hardware handler that is monito
the status of hardware. Refer to the example below, which shows the co
implement a Run button that verifies closure of a safety interlock switch
before testing begins.

’Code in operator interface written in Visual Basic
Private Sub cmdRun_Click()

Answer = TestExecSL1.SendUserDefinedQuery 2, "", 5
If Answer = "Yes" Then

...code that begins testing
Else

MsgBox "Please close the safety interlock", vbOKOnly
End If

End Sub

Clicking the Run button calls the SendUserDefinedQuery method,
whose associated code causes the operator interface to send a user-de
query whose identifier is 2, which we will assume is defined as an inquir
about the status of the safety interlock. If the query receives a valid respo
 41

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

nt

g
gy

ec
tains
the response string is evaluated to determine the status of the safety
interlock, which is used to decide if testing can begin.

As shown next, when the AdviseUserDefinedMessage() function in
the hardware handler receives the message, it evaluates it, checks the status
of the safety interlock, and returns that status in a user-defined response to
the user-defined query sent by the operator interface.

// Code in hardware handler written in C
void UTADLL AdviseUserDefinedMessage(HUTAHWMOD hModule,

HUTAPB hParameterBlock,
LPVOID pUserInitData,
long lID)
LPCSTR lpszMessage)

{
if (lID == 2)

...get status of switch via some I/O strategy
if (SwitchClosed == 1)

(UtaSendUserDefinedResponse(2, "Yes");
else

(UtaSendUserDefinedResponse(2, "No");
}

What About Concurrent Testing?

Note This is an advanced topic that explores the concept of concurrent testing but
does not fully describe how to implement it because the details can vary
extensively from system to system.

If desired, your operator interface can support concurrent or “parallel”
testing if you need to simultaneously test multiple UUTs. It does this by
running two or more copies of HP TestExec SL at once. During concurre
testing, a single tesplan controls different sets of hardware resouces via
multiple instances of the HP TestExec SL control. This is done by havin
each set of hardware resources associated with its own switching topolo
file for the "fixture" layer in the switching topology.

A simple example of code to run two, simultaneous copies of HP TestEx
SL is shown below. The example assumes that the associated form con
two instances of the HP TestExec SL control, TestExecSL1 and
42

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

).

are
ual
TestExecSL2.1 Notice how each instance of the HP TestExec SL control
has a unique topology file and directory for datalogging files.

1. You also could create a separate form for each instance of the HP TestExec
SL control, perhaps via Visual Basic’s multiple-document interface (MDI

Private Sub Form_Load()
’Set up & run first instance of testplan
TestExecSL1.Testplan.Preference.TopologyFiles("fixture").filename _

="c:\Testplans\Fixture1\fixture1.ust"
TestExecSL1.Testplan.Preference.DatalogDirectory _

= "c:\Testplans\Fixture1"
 TestExecSL1.LoadTestplan ("c:\Testplans\MyTestplan.tpa")
 TestExecSL1.Testplan.Run

’Set up & run second instance of same testplan
TestExecSL2.Testplan.Preference.TopologyFiles("fixture").filename _

= "c:\Testplans\Fixture2\fixture2.ust"
TestExecSL2.Testplan.Preference.DatalogDirectory _

= "c:\Testplans\Fixture2"
TestExecSL2.LoadTestplan ("c:\Testplans\MyTestplan.tpa")
TestExecSL2.Testplan.Run

End Sub

Comprehensive implementations of concurrent testing can be complex if
you need to share hardware resources, such as instruments. If you need to
share instruments or other resources, you must ensure that one copy of
HP TestExec SL does not conflict with the other. For example, both copies
cannot simultaneously use a single instrument to make a measurement.
Instead, your operator interface or instrument drivers must implement a
cooperative strategy for sharing resources.

Note User-defined messages cannot communicate between copies of HP TestExec
SL.

Miscellaneous Notes

• If you set a breakpoint in Visual Basic when debugging an operator
interface, HP TestExec SL will not be aware of it. Because it is not aw
of the breakpoint, HP TestExec SL will continue to send events to Vis
 43

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ec
e,

the

,

n

ator

n
he
ode
e

ls.
Basic and those events will be lost as long as Visual Basic remains at the
breakpoint.

• Do not use a Visual Basic Timer control to interact with the HP TestEx
SL control when the control is busy doing some task. As an alternativ
you may wish to use the AdviseUpdate event, which triggers
periodically when the control is not busy. For more information about
AdviseUpdate event, see the online help for the HP TestExec SL
control.

• Be aware that if code in your operator interface invokes a modal form
such as a modal dialog box or a message box, you may lose events
triggered in the HP TestExec SL control while the form is displayed. I
other words, the control keeps generating events even if code in the
operator interface cannot respond to them.

Changing or Enhancing Existing Functionality

Changing the Configuration of an Operator Interface

Module “modConfiguration” contains code that declares and defines the
initial values of configuration variables used throughout the code in oper
interfaces created in Visual Basic. See the code and comments in that
module for more information.

A Quick Way to Hide Existing Functionality

Suppose you wish to remove a command button or other control from a
operator interface to keep operators from using it. One way to remove t
control is to actually delete it from a form and, ideally, also remove the c
that implements its functionality. However, if you do this and later chang
your mind, you must add the control again and replace the code you
removed.

A more benign alternative to removing a control is to simply make it
invisible at runtime by setting its Visible property to False. If desired,
you also can resize it smaller and move it out of the way of other contro
This way, you can easily reuse the control if your needs change.
44

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Note If you actually remove a control instead of simply hiding it, be sure to search
for all references to that control in the code for the operator interface and
remove them as needed.

Controlling the Information That Appears in Reports

Accessing the Default Information

Report information is accumulated by HP TestExec SL during testing. In the
Test Executive environment used to develop testplans, this information
appears in the Report window, and you have the option of printing it. This
same report information also is potentially useful in operator interfaces
because it can be used to print status or repair tickets suitable for attaching to
UUTs.

By default, the stream of report information sent to an operator interface is
identical to that which appears in HP TestExec SL’s Report window. As
shown below, all it takes to make this information appear in a text box is
several lines of code that define what happens when the ReportMessage
event triggers at the end of a run of a testplan.

Private Sub TestExecSL1_ReportMessage(ByVal Message As String)
’Assumes a text box name ’txtMyReportBox’ appears on the form.
’New message is appended to existing text to create a cumulative log
txtMyReportBox.Text = txtMyReportBox.Text & Message

End Sub

Note A RichTextBox automatically formats strings but a simple TextBox does
not. For example, a RichTextBox correctly handles embedded carriage
return/line feed characters in messages. In contrast, a TextBox requires you
to format messages into individual lines by searching for these characters in
substrings and processing them. Thus, it is usually advantageous to use a
RichTextBox when displaying report information.

Although the previous example is easy to understand, it is best suited to
handling small amounts of report information because it is slow. If you need
to work with a larger amount of report information, the example shown
below is much faster.
 45

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
Private Sub TestExecSL1_ReportMessage(ByVal Message As String)
’Assumes a text box name ’txtMyReportBox’ appears on the form.
’New message is appended to existing text to create a cumulative log
txtMyReportBox.SelStart = 2147483647 ‘Some large number <= MAXINT
txtMyReportBox.SelLength = 0
txtMyReportBox.SelText = Message

End Sub

What if Reports Need Additional Information?

While the default level of report information is useful in many cases, there
may be others where you wish to customize the report information that
appears. The easiest way to customize report information is to enhance it by
adding additional information to the default stream of information. While
you cannot add information within the default stream, you can easily add
supplemental information before or after the default stream, as shown below.

Asingle line of code can call the SendReportMessage method and
specify the message to be sent, like this:

TestExecSL1.Testplan.SendReportMessage "Here is my custom message..."

You can call this event as needed from your operator interface. For example,
placing this call in the procedure for the AfterTestplanLoad event as
shown below would add your message to the beginning of the report stream
each time a new testplan was loaded.

Default Information

Your custom message

Your custom message
46

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

y

xec
late

lex,

ec
Private Sub TestExecSL1_AfterTestplanLoad(ByVal Path As String)
TestExecSL1.Testplan.SendReportMessage "Testplan " & Path & _

" was loaded." & vbNewLine
End Sub

And adding this message to the AfterTestplanStop event as shown in
the following example would send your message to the end of the report
stream when a testplan finished.

Private Sub TestExecSL1_AfterTestplanStop(ByVal Reason As _
HPTestExecSL.TestplanState)

If Reason = TestplanPassed Then ’If testplan finished successfully
TestExecSL1.Testplan.SendReportMessage "Testplan passed at " & _

Time & vbNewLine
End If

End Sub

Similarly, you can call SendReportMessage from other events.

What if Reports Need Different Information?

If your need for report information differs greatly from the default, you have
two choices. You can:

• Selectively parse the existing stream of report information collected b
HP TestExec SL

• Ignore the default stream of report information collected by HP TestE
SL, and instead accumulate your own data during testing and manipu
it to provide report information

Because the parsing of the existing report information can be quite comp
we recommend that you adopt the latter approach. You can do this by:

• Turning off standard reporting by setting the value of the
StandardReportingEnabled property to False, and

• Writing routines for the various events associated with the HP TestEx
SL control, and

• Having those routines read the values of properties associated with
objects in the HP TestExec SL control, and
 47

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

 the
he

, and

.

e of
or

f
hange
ple,

y
ptions.
e to
• Sending the values directly to the operator interface, or manipulating
values—to provided calculated values, perhaps—and then sending t
results to the operator interface.

Changing the Language

Which Languages Can I Use?

The language options built into the sample operator interface written in
Visual Basic are English, German, and Spanish. This support includes
multi-language captions for labels, such as those that appear on controls
status messages. If desired, you can add new messages or support for
additional languages but you must provide the message strings yourself

Changing the Default Language

Changing languages is simple if the new language you wish to use is on
those provided with the predefined operator interface, and if your operat
interface does not require additional controls or messages beyond those
already defined.

The value of a global variable named guLanguage in module
“modConfiguration” determines which language is used; i.e., which set o
messages is used from an array of messages in various languages. To c
the default language, simply change the value of this variable. For exam
the entry that sets the default language to English looks like this:

guLanguage = English

To change the default language to Spanish, you would edit the entry as
shown below.

guLanguage = Spanish

Note When changing languages you may need to resize the fields that displa
labels and messages to accommodate their lengthened or shortened ca
For more information about how text expands or contracts from languag
language, see “What About Multiple Languages?”

Switching Among the Built-In Languages

As described above, the value of a global variable named guLanguage in
module “modConfiguration” determines which language appears in the
48

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

own

 is

al

ual

s on

rmine
.

operator interface. If desired, you can dynamically change the value of this
variable and call a subroutine to refresh the captions of controls used in the
operator interface. For example, suppose those who use your operator
interface need the ability to switch between languages “on the fly” as sh
below.

The implementation code for the two OptionButton controls used above
shown below.

Private Sub optEnglish_Click()
 guLanguage = English ’Change the language
 UpdateControlCaptions ’Update the control captions
End Sub

Private Sub optSpanish_Click()
 guLanguage = Spanish ’Change the language
 UpdateControlCaptions ’Update the control captions
End Sub

In a similar fashion, you could switch languages based upon some other
means of identifying which language is required, such as associating a
specific language with each operator’s login.

How Does Multi-Language Support Work?

Traditionally, supporting multiple languages in applications written in Visu
Basic has required using a separate resource compiler, such as the one
provided with Visual C++. However, the operator interface created in Vis
Basic that is provided with HP TestExec SL has its own provision for
supporting multiple languages without using a resource compiler. It relie
an array of strings, gsLangArray, in module “modLocalization” that
contains sets of messages in various languages. These messages dete
the captions for the labels that appear for buttons, text boxes, and such
 49

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

s
”,

ges.
on a

s a
ions
g in

for
on

utton

es,

n’s

 to
An excerpt from the declaration of the array’s contents looks like this:

guLanguage = English
... more entries
gsLangArray(gnRun, guLanguage) = "Run"
gsLangArray(gnRun1, guLanguage) = "&Run"
... more entries

guLanguage = German
... more entries
gsLangArray(gnRun, guLanguage) = "Laufen"
gsLangArray(gnRun1, guLanguage) = "&Laufen"
... more entries

Notice how the definition for each message is repeated in both language
shown. For example, the first entry in the set of English messages, “Run
has a corresponding entry named “Laufen” in the set of German messa
Each string whose value is declared in the array corresponds to a label
control or a status message used by the operator interface.

Note You should duplicate these definitions line for line across the various
languages. For example, if the definition for the English language define
dozen strings—i.e., has a dozen lines of code in it—so should the definit
for the other languages. Although you must specify a value for each strin
the default language, you have the option of specifying a null string (““)
other languages. If you specify a null string for an entry, then the definiti
of that entry in the default language will be used.

Where a simple label has a single entry associated with it, a command b
has two entries. For example, the “Run” button is defined as:

gsLangArray(gnRun, guLanguage) = "Run"
gsLangArray(gnRun1, guLanguage) = "&Run"

The first entry defines the button’s name as it appears in status messag
and the second defines how the name appears on the button itself. This
duplication of entries is needed to support access keys1; e.g., the ampersand
character (&) preceding the second entry defines “R” as the “Run” butto

1. An “access key” lets you press the ALT key and type a designated letter
activate a control or menu item.
50

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

refer

you
ew

y
r
ing

ing
add.
ges

 For
access key, but you would not want “&Run” to appear in messages that
to the button.

What About Languages That Are Not Built In?

Note Module “modLocalization” contains predefined, commented entries that
can uncomment and use as a starting point when adding support for a n
language.

If your operator interface needs to support a language that is not alread
built into the operator inteface provided with HP TestExec SL, and if you
operator interface does not add new controls or messages, do the follow
in module “modLocalization” for each new language:

1. Find the MAX_LANG constant in the general declarations at the beginn
of the module. Increase its value by one for each new language you
For example, if the operator interface already supported three langua
you would enter:

Const MAX_LANG = 4

2. Find the declaration for enumerated type
TxSLOPUIInterfaceLanguage in the general declarations at the
beginning of the module and add an entry for the new language to it.
example:

Public Enum TxSLOPUIInterfaceLanguage
English = 1
German = 2
Spanish = 3
NewLanguage = 4

End Enum
 51

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic
3. Find the declaration for enumerated type txslLangIndex in the
general declarations at the beginning of the module, as shown below.

Public Enum txslLangIndex
gnAbort = 1
gnAbout = 2
...more declarations

End Enum

Near the end of the existing declaration, add an entry for your new
language. Make its value one greater than the last entry in the existing
list. For example, the entry for the German language looks like this:

gnGerman = 69

Your new entry in txslLangIndex might look like this:

Public Enum txslLangIndex
gnAbort = 1
gnAbout = 2
... more declarations
gnYield1param = 363 ‘ Last existing entry
gnNewLanguage = 364 ‘ Your new entry

End Enum

4. In subroutine InitializeLangArray, find the entries that specify
the English language members of array gsLangArray. Copy all of
these entries to the bottom of the subroutine, where they will
subsequently be modified to support the new language.

Note Be sure to paste the entries ahead of guLanguage = tempLanguage,
which appears at the very end of the subroutine.

5. Change the text in all the messages to their equivalents in the new
language, as shown in the examples in “How Does Multi-Language
Support Work?”
52

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

6. Add an entry in the form of

gsLangArray(gnNewLanguage, guLanguage) = "Language"

for your new language to the definition for each language in array
gsLangArray. The value at the index in gsLangArray, Language,
should be in the local language.

For example, the entries in the definition for the English language look
like this:

gsLangArray(gnEnglish, guLanguage) = "English"
gsLangArray(gnFrench, guLanguage) = "French"
gsLangArray(gnGerman, guLanguage) = "German"

And the entries in the definition for the German language look like this:

gsLangArray(gnEnglish, guLanguage) = "English"
gsLangArray(gnFrench, guLanguage) = "Französisch"
gsLangArray(gnGerman, guLanguage) = "Deutsch"

Notice how the value at the index in gsLangArray varies from
language to language. Because this example demonstrates support for
three languages, the third being French, the definition for the French
language also would contain an equivalent set of these entries.

7. At the beginning of the new section, change the value of guLanguage
to the new language. For example, the entry for the German language
looks like this:

guLanguage = German

8. If you want the new language to be the default, change the value of
guLanguage in subroutine “Configure” in module
“modConfiguration”. For example, to make the German language the
default you would enter:

guLanguage = German
 53

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

inese,

ts
or
se

e

ged
t is
t in

:

 in

 and
If your operator interface needs to support a language whose characters
cannot be represented in an 8-bit character set—such as Japanese, Ch
or Korean—keep the following in mind:

• Do the language conversion on a system that has the appropriate fon
and tools installed for the new language. For example, if your operat
interface needs to support the Japanese language, the system you u
probably would have a Japanese version of Microsoft Windows,
Japanese fonts selected, and a keyboard that lets you enter Japanes
characters.

• Each control affected by the new language should have its font chan
to one that supports the new language. Assuming the appropriate fon
installed, you can do this by selecting the control and changing its fon
Visual Basic’s Properties Window.

• If you need to switch between fonts while the operator interface is
running, see the example in subroutine ChangeFonts in
modLocalization.

Adding Language Support for a New Control

The definitions in gsLangArray contain entries for each of the controls
used in the sample operator interface. If you add more controls to an
operator interface, you must add support for them by doing the following

1. In the general declarations section of module “modLocalization”, add
new entries for each of the new controls. Assign their numeric values
sequence after the existing definitions.

The example below shows added entries for a new command button
named MyButton. The values 12 and 13 assume they are the twelfth
thirteenth entries in the list.

...at the end of the existing definitions
’Begin user-defined controls
Public Const userMyButton As Integer = 12
Public Const userMyButton1 As Integer = 13
54

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

er”
asier

h

e no
 has

able

Note As shown above, we recommend that you prefix your additions with “us
so it is obvious that they are custom entries. This makes your changes e
to identify if a future version of HP TestExec SL provides an updated
version of module “modLocalization” in which you wish to reuse your
custom code.

2. Expand array gsLangArray in subroutine InitializeLangArray
by adding entries for the new control. The listing below continues wit
the MyButton example begun above.

...at the end of the existing definitions
’Begin user-defined controls
gsLangArray(userMyButton, guLanguage) = "My Button"
gsLangArray(userMyButton1, guLanguage) = "&My Button"

Here, we are assuming that the entries for “My Button” and “&My
Button” are the twelfth and thirteenth lines in the definition, which
corresponds to the values 12 and 13 assigned to them in module
“Localization.bas”.

3. In routine UpdateControlCaptions in module “modAppSpecific”,
add an entry to update the label on each new control, like this:

...at the end of the existing definitions
’Begin user-defined controls
Form1.cmdMyButton.Caption = LangLookup(userMyButton1)

Adding Language Support for a New Message

In most respects, strings that contain messages for use in text boxes ar
different from strings that contains captions for controls. Each message
its own definition in gsLangArray, and each definition is associated with
a numeric value. If the language is changed by altering the value of vari
guLanguage, the appropriate string is read. You can add new message
strings to the array as needed.

The static strings described above work well for simple, unvarying
messages. However, some messages must change dynamically to be
 55

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

ard
y

ssage

rs are

r the

ive

d the
pt,

l
 to

is
at
informative. For example, suppose you wished to display a message that
read:

Test MyTest was started at 11:50:00 AM

You probably would not want to have the name of the test permanently “h
coded” into your operator interface. Also, you would want to dynamicall
update the time, perhaps by calling Visual Basic’s Time function.

To address this need, the predefined operator interface provided with
HP TestExec SL includes utility routines whose names begin with
“txslFormatString” (such as txslFormatString1) that are used to
format messages that contain replaceable parameters. Each time the me
is displayed, its definition is looked up in gsLangArray for the
appropriate language and the current values of its replaceable paramete
updated.

At design time (in code as opposed to at run time), the message string fo
example above might look like this:

Test %1 was started at %2

See the code in the predefined operator interface for more comprehens
examples of how this works.

Prompting a System Operator from HP TestExec SL

There may be times when an operator interface is running a testplan an
testplan needs to display a prompt, let the operator respond to the prom
and then take action based upon the operator’s response. For example,
suppose you are testing a module that may or may not have an optiona
daughter board attached to it. If the daughter board is present, you need
run additional tests that exercise the board’s functionality. Also, suppose
there is no reliable way to programmatically test for the presence of the
daughter board.

At the beginning of testing, you need to prompt the operator to visually
inspect each module and indicate whether the optional daughter board
present. A straightforward way to do this is by displaying a dialog box th
56

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

?,”

l

ting
contains an appropriate prompt, such as “Is the daughter board installed
and provides Yes and No buttons for the operator’s response.1 A conceptual
diagram of this is shown below.

1. Alternatively, the operator could respond by pressing a mechanica
Yes or No button connected to an I/O port that interfaces with an
appropriate hardware handler.

HP TestExec SL provides several predefined actions that support promp
of system operators from testplans. Located in directory “<HP TestExec SL
home\actions”, they are:

Testplan

test QueryAboutOptionalBoard

test OptionalTest1

test OptionalTest2

...more tests

do the optional tests

skip the optional tests

th
e

flo
w

 o
f t

es
tin

g

StdDialogOkay Displays a prompt in a dialog box. The only
possible response is OK.

StdDialogOkayCancel Displays a prompt in a dialog box. Possible
responses are OK and Cancel.

StdDialogYesNo Displays a prompt in a dialog box. Possible
responses are Yes and No.

StdDialogYesNoCancel Displays a prompt in a dialog box. Possible
responses are Yes, No, and Cancel.
 57

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

r,

a
ve an

, see

l
Note For more information about these actions, see their descriptions in
HP TestExec SL’s online help.

Each of these actions broadcasts a user-defined query to see if a listene
such as an operator interface, is available to display a dialog box. If it
receives a response from a listener, the action broadcasts a second
user-defined query and waits for a listener to respond by indicating that
button was pushed in response to the query. If the action does not recei
initial response from a listener, it displays its own dialog box.

Note For more information about user-defined queries and responses to them
“Understanding User-Defined Messages.”

Continuing with the example begun earlier, you could use the
StdDialogYesNo action to let the operator specify whether the optiona
board is present. The excerpts from HP TestExec SL’s Testplan Editor
window shown below assume that a test in the testplan contains the
StdDialogYesNo action, and that the result returned by the action is
associated with a symbol named OptionalBoard in the
SequenceLocals symbol table.
58

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

al

ped.

om a
ou
 of

ed in
 the

ce is

ship

e
,

e

 the

 SL
If the operator presses the Yes button in response to the query, the
StdDialogYesNo action returns a value of zero to OptionalBoard.
Testing the symbol’s value with the “if...then” statement causes addition
tests, OptionalTest1 and OptionalTest2, to execute. Had the
operator chosen the No button, the optional tests would have been skip

We stated earlier that if the action does not receive an initial response fr
listener, it displays its own dialog box. Given that, you may wonder why y
would want code in the operator interface to display a dialog box instead
simply letting the action display the box. A major benefit of having the
operator interface display the dialog box is that operator interfaces creat
Visual Basic support multiple languages. Thus, a dialog box displayed by
operator interface will appear in whichever language the operator interfa
currently using.

Associating Testplans & UUTs with an Operator Interface

The HP TestExec SL control’s RegisteredTestplans collection can
contain one or more Testplan objects that identify which testplans the
code in an operator interface can load and run. Similarly, the control’s
RegisteredUUTs collection can contain one or more RegisteredUUT
objects that identify which UUTs are available for testing.

Because each testplan can be used to test one or more UUTs, a relation
exists between testplans and UUTs. For example, a testplan named
“Testplan1” might be used to test “UUT_TypeA” and “UUT_TypeB”, whil
another testplan—”Testplan2”, perhaps—tests only “UUT_TypeC”. Thus
“Testplan1” has “UUT_TypeA” and “UUT_TypeB” associated with it, whil
“Testplan2” has “UUT_TypeC” associated with it.

These associations let code in the operator interface automatically load
correct testplan when a UUT’s bar code is read. Associations between
testplans and UUTs are made via entries in sections of the HP TestExec
initialization file, “<HP TestExec SL home>\bin\tstexcsl.ini”, as shown
below.
 59

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

d
ter a

rk

r of
Also, the initialization file’s contents define the items that code in an
operator interface uses to populate the HP TestExec SL control’s
RegisteredTestplans and RegisteredUUTs collections.

Note You must manually edit the initialization file to define which testplans an
UUTs are available, and any relationships between them. See “To Regis
Testplan for an Operator Interface” and “To Register a Testplan for an
Operator Interface” in Chapter 1 of the Using HP TestExec SL book.

The example below provides an overview of how these associations wo
when reading a bar code that identifies a unique UUT. Suppose the first
seven characters of the bar code contain the type of UUT, which in this
example is “UUTABCD” The remaining characters are the serial numbe
an individual UUT.

tstexcsl.ini

[Testplan Reg]
...entries

[UUT Reg]
...entries

associations
between
testplans
and UUTs

RegisteredTestplans collection RegisteredUUTs collection

RegisteredTestplan1 (object)

RegisteredTestplann (object)

RegisteredUUT1 (object)

RegisteredUUTn (object)

.
60

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

e

try in

When the bar code is scanned, code in subroutine HandleBarCode in
form frmMain in the operator interface parses it and stores the first seven
characters in string variable UUT_Type. The other nine characters are
stored in string variable UUT_SerialNumber. The value of UUT_Type is
used to look for a matching string of characters in the “name” field in an
entry in the [UUT Reg] section of the initialization file. Here, the possibl
names are “UUTWXYZ” and “UUTABCD”.1

The value of UUT_Type matches “UUTABCD” in the entry in [UUT Reg]
that contains UUT01=7, where 7 is an index that references a related en
the [Testplan Reg] section of the initialization file. Because the index
is 7, the related entry in [Testplan Reg]is Testplan06,2 which
identifies “TestplanAlpha.tpa” as the testplan to load for the UUT whose
type is “UUTABCD”.

1. Note that bar codes must be all uppercase characters.
2. There is an offset of 1 between indexes in [UUT Reg] and numbered entries

in [Testplan Reg].

[Testplan Reg]
Testplan05=Normal;c:\testplans\TestplanBeta.tpa;...
Testplan06=Hot;c:\testplans\TestplanAlpha.tpa;...

[UUT Reg]
UUT00=6;...;UUTWXYZ
UUT01=7;...;UUTABCD

�++*�������������
1. These characters in the bar code...

2. Are used to find this entry in [UUT Reg]...

4. Which loads this testplan.

3. Which references this entry in [Testplan Reg]...
 61

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

r

d
Note For a more detailed description of the syntax of entries in the initialization
file, see the comments for the [Testplan Reg] and [UUT Reg]
sections in that file.

Using Peripherals with Operator Interfaces

Which Peripherals are Supported?

The sample operator interface created in Visual Basic supports the following
peripheral devices:

• Strip printer with serial interface, such as the HP E1199B

• Bar code reader that connects inline with the keyboard, such as the
Symbolics 3603MX connected to a keyboard “wedge” interface

• Bar code reader with serial interface, such as the Symbolics 3603MX
connected to a serial interface

• Keypad that connects inline with the keyboard, such as the Cherry
ML4700

• Digital I/O hardware, such as the HP E1330B VXI Quad 8-Bit Digital
Input/Output module or an M-Module

The “One Peripheral Per Form” Convention

In general, each peripheral device has its own form in Visual Basic. The
code in a form associated with each peripheral handles interaction with the
peripheral even though other forms or modules may be the actual users of
the peripheral. For example, form “frmStripPrinter” acts as a container fo
controls used to interact with a strip printer. Also, the form contains code
that configures the I/O port and does some formatting of report output.
However, the actual report information sent to the strip printer is acquire
elsewhere from HP TestExec SL.
62

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

se

of

e or
rator

d

t is
ode
thers
The forms provided for interacting with peripherals include:

Note Peripherals that connect inline with the keyboard, such as keypads and
“keyboard wedge” bar code readers, do not have separate forms becau
they simply emulate the behavior of the keyboard.

If you add other peripherals, we recommend that you follow this “one
peripheral per form” convention so you can quickly identify the sections
code associated with peripherals. Also, you probably will want to include
Boolean variables in module “modConfiguration” to indicate the presenc
absence of any optional peripherals whose forms you include in an ope
interface.

Using Bar Code Readers

Note See “Associating Testplans & UUTs with an Operator Interface” for
information about how scanning a UUT’s bar code can automatically loa
the appropriate testplan.

About Bar Code Readers

A bar code reader provides quick and error free entry of information tha
used repetitively, such as operator logins or serial numbers. Some bar c
readers resemble guns that you point at the bar code being read, while o

frmStripPrinter Used with a strip printer

frmSerialBarcode Used with a serial bar code reader

frmTxSLSharedIO Used with I/O resources that are shared by an
operator interface and HP TestExec SL, such as
a digital I/O card used to read external Run and
Stop buttons
 63

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

e
r to

hen

r
r
e
ode
 the

er,
 how

’s
al
UT.

ed by
rent
are wands that you wave across the bar code or horizontal scanners over
which you pass the bar code.

Regardless of which type of bar code reader you use, their typical
characteristics include:

• Support for some method of triggering that tells them when to read th
bar code. For example, a bar code “gun” usually has a physical trigge
pull, while a serial bar code reader may expect a signal that tells it w
to read the bar code.

• They interface with a PC via some I/O strategy, such as inline with its
keyboard (usually the easiest to implement) or via a serial port.

• They can be programmed to specify which, if any, optional leading o
trailing characters are sent to help identify what is contained in the ba
code, or to identify the end of transmission. For example, the bar cod
reader may append a carriage return/line feed to a bar code. When c
in the operator interface sees this combination of characters, it knows
complete bar code has been received.

Because these characteristics can vary with the model of bar code read
make sure you are familair with how your bar code reader operates, and
to program it appropriately.

Changing the Processing of Bar Codes

When a bar code is read, code in subroutine “HandleBarCode” in form
“frmMain” processes it. This processing includes checking the bar code
validity, parsing it into separate strings that contain a UUT type and seri
number, and loading the appropriate testplan according to the type of U

Browse the code in “HandleBarCode” to see how bar codes are process
default, and modify the code as needed if your bar code scheme is diffe
from the default.
64

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Testing the Code for Bar Code Readers

HP TestExec SL provides several sample testplans and related files you can
use to see if your bar code reader can successfully read bar codes. Located in
directory “<HP TestExec SL home>\samples\uidebug\testplans”, they are:

Note You may need to modify the search paths for actions and DLLs to make
these testplans work; see “Specifying the Search Path for Libraries” in
Chapter 5 of the Using HP TestExec SL book.

5Passes.tpa Testplan with five tests that pass

5Failures.tpa Testplan with five tests that fail

TypesAndLimits.tpa Testplan that illustrates simple data types and the
limit checkers used with them. Also, sends a
message to the stream of report data during
testing. Has two variants, Normal and WithDelay,
where WithDelay inserts delays into tests to slow
them so you can watch the testplan as it
executes.
 65

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

file

Shown below are bar codes you can use to test bar code readers. They work
with the testplans described above, and with the default associations
between testplans and UUTs specified in HP TestExec SL’s initialization
(see “Associating Testplans & UUTs with an Operator Interface”) Below
each bar code is the text it contains.

Loads the 5Passes testplan �&�))�������������
Loads the 5Failures testplan ����"������������
Loads the 5Failures testplan ����"�������������
Loads the TypesAndLimits
testplan �����������������
Loads the TypesAndLimits
testplan ������������������
Loads the TypesAndLimits
testplan with the WithDelay
variant

�����"�/���������
66

Customizing the Operator Interface
Operator Interfaces Created in Visual C++
Operator Interfaces Created in Visual C++

Note The sample operator interface provided with HP TestExec SL that is created
in Visual Basic has some automation features built into it, while the sample
operator interface created in Visual C++ does not.

What is the Standard Operator Interface in Visual C++?

The standard operator interface created in Visual C++ is shown below. The
code for its project is in directory “<HPTestExec SL home>\opui”.
 67

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

est

ns a
 the
 for
e

e
Inside an Operator Interface in Visual C++

Before you create a specific operator interface in Visual C++, you should be
familiar with how operator interfaces work in general when using Visual
C++. The next several topics describe the underlying concepts for operator
interfaces developed in Visual C++.

Overview

Refer to the illustration below. When someone logs in to HP TestExec SL
they are identified as the member of a group, such as “Operator.” The T
Executive loads whichever user interface, or “personality,” is associated
with the user's group in file “<HP TestExec SL home>\tstexcsl.ini”. By
default, the code for the operator interface is stored as a DLL in file
“opui.dll”.

The DLL for the operator interface contains calls to functions in what is
called the “Runtime API” because it is an API that lets you vary how the
Test Executive appears to its users. This custom API provides the functio
user interface needs to interact with the Test Executive. Besides calls to
Runtime API, the DLL also contains whatever supporting code you write
use with the calls, such as functions to display status information or mak
buttons appear on the screen.

For descriptions of the functions in the Runtime API, see Chapter 5 in th
Reference book.
68

Customizing the Operator Interface
Operator Interfaces Created in Visual C++
How the Operator Interface Requests Service

When the custom DLL containing code for the operator interface is loaded,
the Test Executive acts as a server that responds to requests from the
operator interface. For example, if the Test Executive is acting as a server
then clicking a button on the user interface could have the DLL call a
function in the Runtime API that causes the Test Executive to begin
executing a testplan.

Shown next is a state diagram for the Test Executive when it acts as a server
for an operator interface created in Visual C++. The states it can assume are
Init, Empty, Testplan Loaded, Sequencing, Running, Test Executing, and
Reporting. Arrows show transitions from one state to another.
 69

Customizing the Operator Interface
Operator Interfaces Created in Visual C++
A transition from one state to another occurs in response to a request made
by a call to the appropriate function. A testplan must be loaded before
proceeding to any of the run states. Thus, a normal start-up process is to use
the VLoadTestplan() function to bring the Test Executive from the
70

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

 the

our

ate

 will
f

rver,

e of
lts

; see

zed
ore

 it
wn
Empty state to the Testplan Loaded state. Once this has been done, you can
begin running a testplan by calling function VRunSequence() in
response to a “Run” button or an automation handler. When the test
sequencer exits at the end of the testplan, the Test Executive returns to
Testplan Loaded state and is ready to accept a new request to run the
testplan.

Most state transitions call a related internal function that generates an
advisory message you can receive via a callback routine if the code in y
operator interface has registered interest in that event. For example, the
initial transition from Sequencing to Running (down the left side of the st
diagram) has routine AdviseRunningBegin() associated with it. If you
use the related callback routine, VRegisterRunningBegin(), in your
operator interface to register interest in this event, the operator interface
be notified when this state transition occurs. You could use knowledge o
this event to print a “Testing...“ status message for operators to let them
know when testing is underway. In a similar fashion, you can register
interest in other events and act upon them.

Accessing Global Data from the Operator Interface

Besides requesting service from the Test Executive when it acts as a se
an operator interface also needs to interact with global data for the test
system. For example, the operator interface may need to know the nam
the current testplan, the pass/fail status of the previous test, or the resu
from a measurement.

A specialized set of functions in the Runtime API lets your code in the
operator interface access global data stored in the System symbol table
“Predefined Symbols” in Chapter 5.

Interacting with the Test Sequencer

The standard Test Executive provides a simple sequencer that is optimi
for the needs of high throughput, “Go/No-Go” testing applications. For m
demanding applications, you may want to augment that sequencer’s
functionality. Although the basic sequencer will always be there because
houses data structures used by HP TestExec SL, you can cause your o
sequencer to be run instead of the one provided by Hewlett-Packard.
 71

Customizing the Operator Interface
Operator Interfaces Created in Visual C++
The framework in which test sequencers operate in HP TestExec SL
provides a set of built-in controls whose settings are accessible via API
functions. These controls are available to any sequencer that is loaded, and
we recommend that your replacement sequencer honors these controls to the
extent it can.

API functions you can use to determine under what conditions the sequencer
halts, and in which state it halts, are:

VConfigureHaltOnFailure()
VConfigurePauseOnFailure()
VConfigureNoHalt()
VGetHaltMode()
VGetFailCountLimit()

Two other API functions let you run the testplan repeatedly:

VConfigureCountedLoops()
VConfigureTimedLoops()

The last two APIs are mutually exclusive; i.e., you cannot simultaneously
use counted loops and timed loops.

See Chapter 5 in the Reference book for the full syntaxes of these API
functions.

Creating an Operator Interface in Visual C++

You must be proficient with Visual C++ and the Microsoft Foundation Class
Library (MFC) to do the tasks described below.

Note Details of the steps described below will vary according to which brand and
version of compiler you use.

1. Create a new directory and copy the project files for the operator
interface supplied by Hewlett-Packard to it.

The original project files are located in subdirectories beneath directory
“<HP TestExec SL home>\opui”.
72

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

ted.

or

 and
d

y
i”
me
2. Rename the new project. For example, the original project is named
“opui” and it creates “opui.dll” as its output. Given this, you might call
yours “my_opui”.

3. Start your compiler and open the project in the directory you just crea

4. In your compiler, specify the locations of the project's files in the
directory you created.

5. Edit the source files as needed to modify the operator interface.

If you want to change the underlying functionality of the operator
interface, edit file “opui.cpp”. To modify the appearance of the operat
interface, edit the visual resources associated with it.

6. Compile the source files into a DLL.

For convenience, you can compile a debug version of the file, use it,
not bother recompiling it as a release version. The additional overhea
from debug code in this single DLL is negligible.

7. Copy the modified DLL to HP TestExec SL's “bin” directory so that it
replaces the existing file “opui.dll”.

Tip: If desired, you can give your new DLL (and its project) an entirel
different name from the original. If you do, be sure to edit “tstexcsl.in
so the “Operator=” entry in its [Components] section specifies the na
of the new DLL for the operator interface.

Doing Specific Tasks with an Operator Interface in
Visual C++

Responding to a “Run” Button

During its init, the personality registers callbacks for AdviseSequenceBegin,
AdviseSequenceEnd, and AdviseRunningEnd.

The user or system integrator creates an operator interface form as a DLL
following the Runtime API guidelines. It is probably a MFC-based DLL.
The operator interface presents a Run button as a control on the form. A
 73

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

 on

es it
 the
ad

ation
dule

API.

, and

e
vity.

ds

function named OnRunClick() is created and associated with the click event
of the Run control. The OnRunClick function calls VRunSequence()
(Runtime API routine). If the system is successful in bringing the sequencer
to the Running state the operator interface gets back its
AdviseSequenceBegin callback. The interface should note the running state
on its display (e.g. light the Run button) and return. At the end of the testplan
the interface code will get first the AdviseRunningEnd callback and then the
AdviseSequenceEnd callback. The testplan end callback will be the only one
received if the user pressed Pause, assuming it was provided by the interface.
At this point control returns to the statement following the VRunSequence
call.

Beginning a Test Cycle

During init, the controller registers the AdviseIdlePoll,
AdviseSequenceBegin, and AdviseSequenceEnd callbacks.

Let’s take a simple scenario first. Assume only one testplan is being run
this station for a long time.

Assume the init of the personality reads the fixture code and loads the us
to determine the testplan to load. Perhaps it has a “.ini” file that provides
lookup function. It then reads the path of the testplan to automatically lo
and manually loads it (VLoadTestplan()).

At this point the system is in the Testplan Loaded state and the
AdviseIdlePoll is being polled continuously during the system idle time.
When the automation interface detects a load command from the autom
handler, it reads the bar code of the UUT, decodes it, verifies that the mo
type is correct, and stuffs the serial number into the proper symbol table
parm for use by the rest of the system. It then calls the VRunTestplan()

The sequencer takes charge now and calls the AdviseSequenceBegin
callback as it begins executing the testplan tests. When the testplan
completes it calls the AdviseSequenceEnd callback. The automation
interface now does whatever operation is necessary to release the UUT
signals the automation handler. Control returns to the original
AdviseIdlePoll function where the run was initiated. It simply returns. Th
system is now back in Testplan Loaded state polling for automation acti

The complex scenario is just like this except that when the interface rea
the module type it determines that a different testplan is required. It calls
74

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

til a
g
un or
VUnloadTestplan() and calls VLoadTestplan() for the new one. Now
VRunTestplan() can be called to pick up the scenario just as the simple case.

Displaying the Name of the Current Test

Register to receive the AdviseTestBegin and AdviseTestEnd callbacks. The
AdviseTestBegin callback will supply the handle of the currently executing
test. The operator interface form can then use VGetTestName () to get the
name of this test statement and display it on the form. The end callback will
inform the interface to cancel it.

Displaying the Testplan and Test Timing

Register to receive the AdviseRunningBegin, AdviseRunningEnd,
AdviseTestBegin, and AdviseTestEnd callbacks. The testplan begin/end
calls will bracket the time to execute one pass through the testplan. If the
user wishes to track average passing time and average time to first failure
they can distinguish them by tracking the overall pass/fail state by looking at
the state of each test at the AdviseTestEnd callback. The execution time of
each test may be determined by the test begin/end bracketing calls.

Displaying Messages

The user interface can register its interest in the AdviseUserDefinedMsg
event. When the test programmer broadcasts a message via the
VSendUserMessage() function, it will be routed to the callback function. It
is the responsibility of the user interface provider to display the message.
The tag parameter can be used to communicate any user defined
information, such as screen location to post in, “severity”, color, etc.

Beginning When the Testplan Name is Unknown

There are times when the actual testplan to use cannot be identified un
UUT is loaded or scanned. In this situation, the personality will only brin
the system up to the Empty state and wait there until the user presses r
the handler indicates it is ready. Then the UUT type/testplan can be
identified, the proper testplan loaded, and the run initiated.
 75

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

es
n

 an

he

k
ss
eans
ation

 in
)

e
Creating an Automation Interface in Visual C++

The topics in this section suggest ways in which you might handle the
implementation of an automation interface in Visual C++.

Note Note: Look in either of two places for descriptions of the API calls
referenced in subsequent topics in this section. Calls whose names begin
with “Uta” belong to the C Action Development API, and calls whose nam
begin with “V” are part of the Runtime API. Both APIs are documented i
the printed Reference book and in online help.

Software Configuration for an Automation Interface

The “testexcsl.ini” file contains configuration options you must set when
automation interface is present:

• A flag to indicate the presence of an automation interface. This tells t
test system to skip the normal log-in sequence

• A pointer to the DLL that contains the automation interface.

• A flag that causes failure ticket information to be sent to the default
printer.

See also: “Setting Up an Automation Interface” in Chapter 6 of the Using
HP TestExec SL book

Choosing a Task Model in Windows

Your choice of a Windows task model affects the construction of your
automation interface. For example, Windows applications can use a tas
model in which there is only a single thread of execution. When a proce
has control of the execution thread, other processes cannot run. This m
that under the single-thread model you cannot assume that your autom
interface is actively running in the background while other Windows
processes are active.

This can also create conflicts with the Windows “event-driven” approach
which nothing happens until an event (such as the user clicking a button
occurs. The nature of the event determines the next system action. If th
76

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

ay

rol
cle,

is

ons

automation interface does not keep this “event loop” alive, the system m
stop responding to events.

If you implement your automation interface as a modal dialog, it will cont
its own event loop. To poll for external events that would initiate a test cy
the interface must coordinate the test system execution thread with the
Windows event loop. You can find many techniques for implementing th
approach in Windows programming references.

A pseudo-code example of the method looks like this:

Msg msg;
while (m_bKeepGoing)
{

if (pollAutomationHandler())
initiate Test();

if (PeekMessage (&msg, hDialog, 0, 0, PM_REMOVE))
if (!IsDialogMessage(hDialog, &msg))

{
Translate Message (&msg);
Dispatch Message (&msg);
}

}

A simpler technique uses some of the built-in support provided by functi
in HP TestExec SL’s Runtime API. If you implement your automation
interface as a non-modal dialog, the normal HP TestExec SL event loop
stays active. You can register a request for idle polling and the API will
continually call your poll routine as long as the system is idle.

Here is a pseudo-code example of this technique:

void MyIdlePoll (WORD state)
{

if ((vstate)state < VSequencingState)
if (pollAutomationHandler())

initiate Test();
}

Related API Functions are:

VRegisterIdlePoll()
UtaKeepAlive()
 77

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

T

nd

tion.
ures

t the
ext
tion
f
Using a Bar Code Reader

In an automated production line, bar code readers usually connect to the test
system by an RS-232 serial interface port. In a typical scenario, the
automation interface receives a signal that a board has arrived. The
automation interface then triggers the bar code reader to scan an identifier
label on the UUT. The automation interface uses a symbol table to look up
the UUT type and the corresponding testplan. HP TestExec SL then loads
and runs the appropriate test for the UUT.

If the bar code reader is under the control of the test system, then it can be
triggered to read a bar code UUT identifier when a UUT arrives to test. The
bar code reader typically responds by sending the identifier read back to the
test system by a serial port. The buffer size of the serial port can be an issue
if the identifier is longer than the 16 characters handled by a standard 16550
UART in a test system’s serial interface. For longer identifiers, you may
have to use a serial interface card with a larger buffer to avoid losing UU
identifier characters.

Related API Functions are:

VLoadTestplan()
VRunSequence()

Monitoring Test Results

Once started by the VRunSequence() function, the testplan runs to
conclusion (or continues until interrupted by the user) before returning
control to the automation interface. When the testplan finishes, it halts a
returns a code. The code indicates whether the system had a normal or
abnormal completion. You can use this code as a reasonably accurate
pass/fail indicator, but the code may not adequately reflect the true situa
For example, you may have set the test system options to ignore all fail
or to continue until a given number of failures has accumulated.

A better way to determine the test results is to register a callback for the
Report event using the VTestJudgement() function to determine
whether the test passed or failed. You can accumulate information abou
pass or fail status of each test, then use that information to decide the n
action for the automation interface (display a message, notify an automa
controller, etc.). For example, a UUT may have to fail tests 2 and 4 out o
tests 1-4 before the overall result is a failure for that UUT. You would
78

Customizing the Operator Interface
Operator Interfaces Created in Visual C++
accumulate the pass/fail information in a table, then use the table to make the
final determination.

Related API Functions are:

VRunSequence()
VTestJudgement()
VRegisterTestReport()
Miscellaneous functions for callback registration

Displaying Messages to the User Interface

The automation interface must display whatever system status information
required for the operator interface. Most of the events of interest to the
automation interface are available by runtime API callback registration.
Typical information desired might be the name of the current testplan, the
state of the tester (running, stopped, etc.), the pass/fail status of the current
or previous UUT, the name of the test currently executing, and the current or
previous failure report.

Related API Functions are:

Functions for callback registration (VRegister...)
Functions for interacting with system data (VGet...)

Also, the full Visual C++ MFC class library is available to handle
Windows interactions.

Responding to Keyboard and Mouse Commands

The automation interface must handle the keyboard and mouse input for the
test system. See the example operator interface for details on ways to handle
this input.

Related API Functions are:

(none)

The full Visual C++ MFC class library is available to handle this
Windows interaction.
 79

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

at
I

is

o be

ting.

ail
Generating Repair Information

There is no default report window or standard reporting feature. As a system
integrator, you have total control over the contents, format, display, and
printing of your test reports. However, you can use a simple built-in
function, StandardTestReport(), to easily format reports.

Generating a report trace is a two-step process. Although the process may at
first seem awkward, it gives you flexibility. First, your user interface needs
to register three callbacks—VRegisterTestReport(),
VRegisterSendReportMsg(), and
VRegisterClearReport()—to generate the report content. Second,
you route that content to its destination.

The VRegisterTestReport() callback gives you a handle to the test
that just executed. You can then use the VTestJudgement() function to
determine whether the test passed or failed. To trace the test, call the
function StandardTestReport(HUTEST, Cstringd). It returns a
formatted string in the Cstringd reference parameter. Include “rprtfmt.h”
and link to “prrtfmt.lib” to use the standard report format.

If the standard format is unsuitable or if you do not want to alter the form
for all interfaces by replacing “rprtfmt.dll”, create your own format. The AP
provides several useful functions. The most important one for reporting
VGetLimitsandRest2().

Related API Functions are:

VRegisterTestReport()
VRegisterSendReportMsg()
VRegisterClearReport()
VTestJudgement()
VGetLimitsandResult2()

Writing Repair Tickets

Some automated lines require that the test system print a failure ticket t
attached to the UUT or its carrier after testing finishes. The automation
interface must control this operation if the test system manages the prin

You may also choose to implement a “paperless” repair ticket scheme in
which you do not necessarily want to print a repair ticket on the spot if a
UUT fails. For example, the automated production line, based on pass/f
80

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

ould

ality

you
res.

te
’s
ocol
ows
ore

 that
ion
information from the test system, may automatically route failing boards to a
repair loop. There a technician would reread the UUT bar code to call up a
display of the failure information.

To accommodate the paperless scheme, you can use HP TestExec SL’s
built-in datalogging features to output test results in a file. You can then
route the results elsewhere (such as a main automation controller) for
formatting and using the information in an overall repair ticket.

The sample user interface provided with HP TestExec SL includes an
example of how to print failure information.

Signaling Downstream Devices

After the testplan completes, it is the responsibility of the automation
interface to signal downstream automation equipment or the central
computer that the test is complete and to indicate the test results. This c
be by a message sent on a serial or LAN interface, depending on the
specifics of the automation system.

Datalogging

One outcome of testing may be to send datalogging information to a qu
management system. This capability is built into HP TestExec SL. The
automation interface does not have to handle datalogging tasks unless
need a format or protocol not supported by the built-in datalogging featu

LAN Communications

Some automation systems may require that the test system communica
with a central automation controller by a LAN interface. The test system
automation interface must then provide the correct communications prot
and messaging. You can add LAN communications using existing Wind
networking features. Consult the relevant Windows documentation for m
information.

Dealing with Problems

Sometimes the automation line experiences problems to which the test
system must respond. Examples include downstream equipment failures
force the test system to stop accepting more UUTs to test. The automat
 81

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

 of

n.
interface must handle such exceptions as part of its interactions with other
automation equipment or the central automation computer.

Other problems may arise when HP TestExec SL raises an exception testing
a particular UUT. There is an error sequence testplan that tries to put the
UUT and test system in a safe state when an exception occurs. The error
sequence, however, also may experience an exception for a particularly bad
problem. The automation interface must then decide how to continue after
such exceptions occur. This may include the following:

• Notifying downstream automation equipment or the central computer
the exception.

• Deciding, based on the exception type and severity, if the test system
should continue testing the next UUT.

• Deciding to exit HP TestExec SL if there is an extreme error conditio

Related API Functions are:

UtaExcRegIsError()
UtaExcRaiseUserError()
UtaExcRegClearError()
VAppExit()
VStopSequence()
VPauseSequence()
82

2

Creating a Hardware Handler

This chapter describes how to create a hardware handler, which is a software
layer written in C/C++ that knows how to communicate with a hardware
module and is aware of the module’s internal topology.

For more information, see Chapter 3 in the Getting Started book, Chapter 4 in
the Using HP TestExec SL book, and Chapter 3 in the Reference book.
83

Creating a Hardware Handler

Writing a Hardware Handler
Writing a Hardware Handler
The following topics describe how to implement a hardware handler. Once
you have created the hardware handler, you can specify it when using the
Switching Topology Editor to define switching topology, as shown below.
This makes HP TestExec SL aware of the hardware handler.

Modeling Your Hardware

As an aid when creating a hardware handler, label a diagram of the switching
elements inside modules so that each connector, node, and switching
element is uniquely identified.
84

Creating a Hardware Handler

Writing a Hardware Handler

The example below shows a simple 2x2 switching matrix with its features
labeled.

Monitoring the Status of Hardware

There may be times when you want HP TestExec SL to interact with very
simple hardware, such as switches or sensors. For example, suppose your
test system is connected to an automated handler that uses a microswitch to
indicate when the UUT is correctly positioned for testing. HP TestExec SL
can “watch” for closure of that switch and then continue testing when the
switch closes. One method for doing this is shown below.
 85

Creating a Hardware Handler

Writing a Hardware Handler

The example works like this:

1. A test being run by HP TestExec SL contains an action named
SwitchStatusExecute whose code (written by you) loops until the
value of a symbol named SwitchStatusVar in a global symbol table
indicates that the microswitch has closed. For example, the value of
SwitchStatusVar might be 1 when the switch is closed and 0 when
it is open.

2. Meanwhile, HP TestExec SL is periodically calling a function named
AdviseMonitor() in the hardware handler.

For information about specifying how frequently HP TestExec SL calls
the AdviseMonitor() function, see “Specifying the Polling Interval
for Hardware Handlers” in Chapter 6 of the Using HP TestExec SL book.

3. When AdviseMonitor() is called, its implementation code (written
by you) interrogates an I/O port—a serial port, perhaps—to see if the
microswitch is closed or open.

4. When it receives the status of the microswitch, AdviseMonitor()
writes that status to SwitchStatusVar in the symbol table.
86

Creating a Hardware Handler

Writing a Hardware Handler

.

ent

y
5. When the value of SwitchStatusVar finally becomes “true,” the
SwitchStatusExecute action stops looping and testing continues

The options you have when choosing where to implement an
AdviseMonitor() function are:

• You can put the function in the handler for a hardware module or
instrument.

• You can create a minimal hardware handler whose sole purpose is to
monitor the status of hardware, and put the function in it.

Besides the code that implements the AdviseMonitor() function, all
the minimal hardware handler needs are the mandatory functions
required in every hardware handler, which are DeclareParms(),
Init(), Close(), and Reset().

Creating a Project for the Hardware Handler

Note The topics in this section describe how to use the development environm
provided with Microsoft Visual C++ 5.0. If you are using another C/C++
development environment, the details will vary but the concepts will be
similar.

Setting the Path for Libraries

1. Choose Tools | Options in the Visual C++ menu bar.

2. In the Options box, choose the Directories tab and specify a path for
library files that includes the “lib” directory beneath the home director
 87

Creating a Hardware Handler

Writing a Hardware Handler

SL

n
in which HP TestExec SL is installed on your system. An example is
shown below.

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

Setting the Path for Include Files

1. In the Options box, specify a path for include files that includes the
“include” directory beneath the home directory in which HP TestExec
is installed on your system. An example is shown below.

2. Click the OK button to save the path you specified.

Note Depending upon where you installed Visual C++ and HP TestExec SL o
your system, your paths may vary from those shown.
88

Creating a Hardware Handler

Writing a Hardware Handler
Creating a New DLL Project

1. Choose File | New in the Visual C++ menu bar.

2. Choose the Projects tab and specify Win32 Dynamic-Link Library as the
type of project, as shown below.

3. Type a Name for your project.

4. Specify the Location for your project.

5. Choose the OK button.

Specifying the Project Settings

You set the project settings once for each new project you create.

1. Choose Project | Settings in the Visual C++ menu bar.

2. If needed, choose the General tab to make its options visible.
 89

Creating a Hardware Handler

Writing a Hardware Handler

t

n

rary

ject

u
3. In the Project Settings box, specify “Not Using MFC” for the Microsof
Foundation Classes option, as shown below.

4. Choose the Link tab to make its options visible.

5. Specify “utacore.lib” for the “Object/Library modules” option, as show
below.

Linking against “utacore.lib” lets the compiler resolve all the external
references to HP TestCore definitions and functions used in your
switching handler code. Because you already specified the default lib
path earlier, you do not need to enter the full path here.

6. Choose the OK button to save the project settings and close the Pro
Settings box.

Creating an Implementation File for the Hardware Handler

Note Directory “<HP TestExec SL home>\include” contains a header file named
“switch_hndl.h” that declares the prototypes for the functions used in a
hardware handler. If desired, you can “include” this file in your
implementation file to ensure that you call the functions correctly. Or, yo
90

Creating a Hardware Handler

Writing a Hardware Handler

rate
es
ler,
may even want to copy this file into your implementation file as a starting
point when implementing the functions. If you use this file as a template in
your implementation file, be sure to replace the UTAAPI macros in it with
UTADLL.

1. Choose File | New in the Visual C++ menu bar.

2. On the Files tab in the New box, specify the file’s type, name1, and
location, as shown below, and choose the OK button to add it to your
project.

3. Type the file’s contents in the editor window that appears.

Writing the Routines for Functions in the Implementation File

1. Unless you have a specific reason for writing a hardware handler in C++, use
a “.c” extension for your implementation file so it matches the examples.

Note Be sure to specify “#include <uta.h>” at the beginning of the
implementation file for a hardware handler.

As a minimum, all hardware handlers require DeclareParms(),
Init(), Close(), and Reset() functions in them. Even if these
functions do nothing, they must be present or HP TestExec SL will gene
an error when attempting to call them. The example shown below includ
additional, switching-specific functions because it is for a switching hand
which is a common type of hardware handler used to control switching
 91

Creating a Hardware Handler

Writing a Hardware Handler

re

e
tual
gy

e of
ress,

n 2x8

ific
e

d by
hardware. If you need to know more about a particular function, look it up in
Chapter 3 in the Reference book.

1. Add an Init() function to initialize or “open” a hardware module.

Code that you write to implement this function, which must appear in all
hardware handlers, should do whatever is needed to initialize the
hardware module. For example, you can allocate the memory for a
structure to hold transient data used by a function in your hardware
handler.

2. Add a Close() function to close a hardware module opened with the
Init() function.

Code that you write to implement this function, which must appear in all
hardware handlers, should do whatever is needed to close the hardwa
module, such as freeing or deleting any memory associated with a
structure created in the Init() function.

3. Add a DeclareParms() function to declare parameters passed to th
hardware handler when it is loaded for execution. (You specify the ac
values of the passed parameters when you use the Switching Topolo
Editor to define switching topology.)

Code that you write to implement this function, which must appear in all
hardware handlers, should call the UtaHwModDeclareParm()
function to declare any parameters needed to distinguish one instanc
the hardware module from another, such as the module's HP-IB add
VXIbus slot number, etc. Also, you can use this function to pass
configuration parameters, such as a parameter that chooses betwee
and 4x4 multiplexer configurations in a switching module.

One use for this function is to pass a parameter that identifies a spec
switching module among several modules of the same type. The cod
you write in other functions in the switching handler, such as
SetPosition() and GetPosition(), uses this parameter to
address a specific module according to the I/O or driver strategy use
your module.
92

Creating a Hardware Handler

Writing a Hardware Handler
4. Add a Reset function to define what happens when the switching
module is reset, and return the amount of time it will take to finish
resetting, if any.

Code that you write to implement this function, which must appear in all
hardware handlers, should do whatever is needed to reset the hardware
module to whatever you want its default state to be. For example, the
code needed to control switching elements depends on what kind of I/O
or driver strategy your switching module uses.

A Reset function for the 2x2 matrix example might look like this:

UTAUSECS UTADLL Reset (HUTAPB hParameterBlock, LPVOID pBindData)
{
...(code that opens relay K11 via I/O strategy for module)
...(code that opens relay K12 via I/O strategy for module)
...(code that opens relay K21 via I/O strategy for module)
...(code that opens relay K22 via I/O strategy for module)
return TIME_TO_RESET;
}

5. Add a DeclareNodes() function to declare the nodes inside the
switching module and any connectors that exist on the switching module.
Also, declare the adjacencies, which are two nodes in the switching
topology that can be connected by a switching element, in the switching
module.

Note that the DeclareNodes() function uses calls to the
UtaHwModDeclareNode() and
UtaHwModDeclareAdjacent() APIs. The node names you assign
in calls to the UtaSwModDeclareNode() API are the same nodes
names that appear when the Switching Configuration Editor is used to
define switching topology.
 93

Creating a Hardware Handler

Writing a Hardware Handler
A DeclareNodes() function for the 2x2 matrix example might look
like this:

void UTADLL DeclareNodes (HUTAHWMOD hModule, HUTAPBDEF hParmBlockDef)
{
// Declare the nodes
UtaHwModDeclareNode (hModule, "C1-1", "Connector 1, Pin 1", NULL);
UtaHwModDeclareNode (hModule, "C1-2", "Connector 1, Pin 2", NULL);
UtaHwModDeclareNode (hModule, "C2-1", "Connector 2, Pin 1", NULL);
UtaHwModDeclareNode (hModule, "C2-2", "Connector 2, Pin 2", NULL);

// Declare the adjacencies -- i.e., pairs of adjacent nodes --
// connected via a switching element
UtaHwModDeclareAdjacent (hModule, "C1-1", "C2-1", 11, 1);
UtaHwModDeclareAdjacent (hModule, "C1-1", "C2-2", 12, 1);
UtaHwModDeclareAdjacent (hModule, "C1-2", "C2-1", 21, 1);
UtaHwModDeclareAdjacent (hModule, "C1-2", "C2-2", 22, 1);
}

6. Add a SetPosition() function to define the open and closed
positions for switching elements that connect adjacent nodes in the
switching module.

A SetPosition() function for the 2x2 matrix example might look
like this:

UTAUSECS UTADLL SetPosition (HUTAPB hParameterBlock, LPVOID pBindData,
IDUTASWELM element, IDUTASWPOS position)
{
switch (element)

{
case 11: // switching element 11 is relay K11

...(code that opens/closes relay K11 based on value of

..."position" via I/O strategy for module)
break;

case 12: // switching element 12 is relay K12
...(code that opens/closes relay K12 based on value of
..."position" via I/O strategy for module)
break;
94

Creating a Hardware Handler

Writing a Hardware Handler

(or

g a

 is
case 21: // switching element 21 is relay K21
...(code that opens/closes relay K21 based on value of
..."position" via I/O strategy for module)
break;

case 21: // switching element 22 is relay K22
...(code that opens/closes relay K22 based on value of
..."position" via I/O strategy for module)
break;

}
}

As with the Reset() function described earlier, this function requires
that you provide the actual code needed to open and close switching
elements in your specific switching module. The contents of this code
will vary with the I/O or driver strategy used by your switching module.
In the case of the simple relays used in this example, your code would
open the relay if “position” was passed a value of 0 and close it if the
value was 1.

You also may want to include error checking routines in this function
any of the functions, as needed). For example, here you could range
check the value of “position” to ensure it is 0 or 1 before programmin
switching element to a new position.

7. Add a GetPosition() function to return the current position of a
specified switching element.

A GetPosition() function for the 2x2 matrix example might look
like this:

IDUTASWPOS UTADLL GetPosition (HUTAPB hParameterBlock, LPVOID
pBindData, IDUTASWELM element)
{
int nPosition;
...(code that assigns "position" the status of switching
...element "element" via I/O strategy for module)
return (nPosition);
}

The code you provide here interrogates the switching module, via its
particular I/O or driver strategy, to determine if the switching element
 95

Creating a Hardware Handler

Writing a Hardware Handler

mal

 of

a

r.

n, or

rger
ant
d it.
opened or closed. Then it assigns nPosition a value of 1 if the
switching element is closed, or 0 if it is opened.

8. (optional) Use UtaHwModTrace() or UtaHwModTraceEx() to
send status messages to HP TestExec SL’s Trace window during nor
testplan execution.

9. (optional) Use DeclareStatus() and GetStatus() to send status
messages to HP TestExec SL’s Watch window during debugging.

10.(optional) Use AdviseMonitor() to monitor the status of hardware.

11.(optional) Use AdviseUserDefinedMessage() to respond to
user-defined messages and control hardware based on the contents
those messages.

For an example of a hardware handler, see “example, sample code for
hardware handler” in online help and the sample files in directory
“<HP TestExec SL home>\samples\filterdemo”.

Updating Dependencies

1. Choose Build | Update All Dependencies in the Visual C++ menu ba

2. When prompted whether to update the debug version, release versio
both for your project, select the Debug version, as shown below, and
choose the OK button.

Note The debug version of a program contains additional code that makes it la
and slower to execute than a release version. Thus, you probably will w
to recompile a final, release version of the DLL after you have debugge
96

Creating a Hardware Handler

Writing a Hardware Handler

rify

ing

Verifying the Project’s Contents

• Choose the FileView pane in the Visual C++ workspace window to ve
the contents of your project, as shown below.

Compiling the Project

• Choose Build | Build <project name> in the Visual C++ menu bar to
build the DLL.

Copying the DLL to Its Destination Directory

Each time you modify the DLL that contains your hardware handler, you
must recopy it to directory “<HP TestExec SL home>\bin”.

Note If desired, you can simplify copying DLLs for hardware handlers by creat
a custom tool similar to the one described for copying DLLs for actions
under “Copying the DLL to Its Destination Directory” in Chapter 3 of the
Using HP TestExec SL book.
 97

3

Customizing Datalogging

This chapter describes how to customize datalogging to control the data that
appears in log records. For general information about how to use datalogging,
see Chapter 5 in the Using HP TestExec SL book.
99

Customizing Datalogging

What Gets Logged?
What Gets Logged?
Listed below are the data items logged during testing. The Name of each
item is terminology from the HP 3070 log record format. The Index is used
when customizing the format of spreadsheet-compatible log records, which
is described under “Specifying What Appears in Log Data for
Spreadsheets.”

Name Description Index

BlockDesignator Name of the test whose data was logged. 9

BlockStatus Pass/fail status of the test, where "0" means the
test passed. If a test returns an array for limits
checking, all elements in the array will be “0” if
the test passed.

10

BoardStatus Pass/fail status of the testplan (UUT), where “0”
means all tests in the testplan passed.

11

BoardType Name of the testplan. 12

Duration Test duration in seconds. 22

HighLimit Upper limit used to decide if the test passed or
failed.

25

#Items Number of items in the array if a measurement
returns an array for limits checking.

0

KnownGood Was the test run on a known-good UUT? If so,
the value is "Y" for Yes.

26

Learning If "learning" was on during the test, value is "Y"
for Yes.

27

LogDir Directory to which the log file was written. 28

LogLevel Level of datalogging in effect during the test; i.e.,
“all”, “none”, “failures”, or “sampled”.

29

LowLimit Lower limit used to decide if the test passed or
failed.

31
100

Customizing Datalogging

What Gets Logged?
Operator Login of user running the testplan. 36

Serial# Serial number of the UUT. 40

String1 Messages logged from the Report window. 43

TestDesignator Index of an element in an array that contains a
value being reported when a measurement
returns an array for limits checking.

49

TestheadType Identifier of the system on which the testing was
done.

52

Testplan Pathname of the testplan. 53

TestStatus Is the value of an element in an array within its
limits if the test returns an array for limits
checking? Value is “0” if within limits.

51

TestplanRev Revision of the testplan. 54

Value The measured value. 55
 101

Customizing Datalogging

Using Log Data with a Spreadsheet

 a

ding

ier,
Using Log Data with a Spreadsheet

What is the Format for Spreadsheet-Compatible Log
Data?

A sample of the datalogging output file—i.e., “xxx.log”—that HP TestExec
SL generates for use with spreadsheets is shown below.

"TEST","INDEX","STATUS","VALUE","NOMINAL","LOW_LIMIT","HIGH_LIMIT"
"Check Period","",0,0.000667000000,0,0.000600000000,0.000700000000
"Check Risetime","",0,0.000100000000,0,0.000000000,0.000150000000
"Check Voltage Peak to Peak","",0,1.90500000,0,1.85000000,2.15000000
"Check Frequency","",0,1499.48900,0,1490.00000,1510.00000
"Check Overshoot","",0,0.100000000,0,0.000000000,0.200000000

The first row contains headings for the columns in which items in
subsequent rows appear. Each subsequent row contains the results for
single test. For example, in the second row the value of TEST is “Check
Period”, the value of HIGH_LIMIT is 0.0007, etc. When loaded as
comma-delimited data, the rows and columns arrange themselves into a
spreadsheet’s representation of data in a grid, as shown next.

The contents of the format definition file, “<HP TestExec SL
home>\bin\ssfmtdef.ini”, determine which data items appear in the
datalogging output file, the order in which the items appear, and the hea
for the columns in which the items appear. The format definition file’s
default contents, which were used to produce the output file shown earl
appear below.
102

Customizing Datalogging

Using Log Data with a Spreadsheet

he
re 7

w
?”
e.,
e
 data
alue
(null) 15 2 #This is a comma separated format for spread sheets SCHEMA:2
ACTION 1 """"""0
BATCH 0 "TEST","INDEX","STATUS","VALUE","NOMINAL","LOW_LIMIT","HIGH_LIMIT"\n""""-1 35
BLOCK 1 """"""0
BOARD 1 """"""0
DIGITAL 1 """"""0
LIMIT 1 """"""0
MEASUREMENT 1 ""\n,7 9 49 51 55 34 31 25
NODELIST 1 """"""0
OPEN 1 """"""0
PHANTOM 1 """"""0
REPAIR 1 """"""0
REPORT 1 """"""0
SHORTFROM 1 """"""0
SHORTS 1 """"""0
SHORTTO 1 """"""0

What is the relationship between the format definition and output files? Only
two rows, BATCH and MEASUREMENT, in the format definition file
affect the output file. Quoted entries in the BATCH row specify the column
headings for data items in the output file. Initially, there are seven column
headings: TEST, INDEX, STATUS, VALUE, NOMINAL, LOW_LIMIT,
and HIGH_LIMIT.

Entries in the MEASUREMENT row specify how many data items there
are, and which item belongs in which column. The number immediately to
the right of “\n,” indicates how many data items—i.e., columns—are in t
definition for output data. The default value is 7 because there initially a
column headings.

Each number in the remaining list of numbers in the MEASUREMENT ro
specifies the Index of a data item, as listed earlier in “What Gets Logged
The first number following the number of data items in the default file—i.
7—is 9. Looking in the list of data items and their indexes shows that th
data item named BlockDesignator, which is the name of the test whose
was logged, has an Index of 9. In other words, specifying 9 causes the v
of BlockDesignator to appear in the column under TEST. In a similar
fashion, the number 31 is the Index for the data item named LowLimit,
which appears under the column labeled LOW_LIMIT in the output file.
Numbers in the list are separated by spaces.
 103

Customizing Datalogging

Using Log Data with a Spreadsheet

t

ngs
ght.

t
ur

d
ta

r

s
Specifying What Appears in Log Data for Spreadsheets

1. Use a text editor, such as WordPad in its text mode, to open the format
definition file used with spreadsheets, which is “<HP TestExec SL
home>\bin\ssfmtdef.ini”.

2. Decide which data items should appear in the output file.

Refer back to the list of possible data items described earlier in “Wha
Gets Logged?”

3. In the BATCH row, add, delete, rename, or reorder the column headi
until they have the names you want, in the desired order from left to ri

4. In the MEASUREMENT row, edit the number immediately to the righ
of “\n,” so it indicates how many data items—i.e., columns—are in yo
new definition for output data.

5. Edit the remaining list of numbers following the number you just edite
in the MEASUREMENT row. Each number specifies the Index of a da
item, as shown earlier in “What Gets Logged?” Enter one number pe
column, and use spaces to separate the numbers.

6. Save the modified definition file.

Note Remember to specify the spreadsheet-compatible datalogging format, a
described in “To Select the Datalogging Format” in Chapter 5 of the Using
HP TestExec SL book.
104

4

 you
Customizing Online Help

This chapter describes how to customize HP TestExec SL’s online help so
can use it as the basis for online help for custom test systems.
105

Customizing Online Help

Why Should I Customize Online Help?
Why Should I Customize Online Help?
If you are a system integrator building test systems for customers, you may
want to use the existing online help as the basis for customized online help
that describes the specific value added by your system integration efforts.
For example, you can expand the online help system to include new topics
specific to unique features you have added to the test system.
106

Customizing Online Help

How Do I Customize Online Help?

l
e

ach

y.
les
®.

e

.

t

How Do I Customize Online Help?
HP TestExec SL’s online help was created using Microsoft Word for
Windows and Blue Sky Software’s RoboHELP®, which is a software too
that enhances the functionality of Word for Windows for producing onlin
help systems.

Source files you can reuse are available under directory “<HP TestExec SL
home>\doc\helpfiles” on the HP TestExec SL CD-ROM. The files in the
help project are organized into the directory structure described below. E
subdirectory beneath the main directory contains a “.doc” (Word for
Windows format) file whose name is the same as that of the subdirector
Besides containing “.doc” files, the subdirectories also contain source fi
in Rich Text Format (“.rtf”) that you can use if you do not use RoboHELP

Tstexcsl.doc The main source file used by RoboHELP®. Instead of
containing help topics, this file provides an entry point into th
structure of the online help files.

Tstexcsl.cnt A contents file for use by the online help.

Tstexcsl.hpj The help project file used by the help compiler.

Tstexcsl.rtf A Rich Text Format version of the main file.

Actions Contains topics about working with actions. Also contains a
subdirectory, “HPAction”, that contains topics about the
predefined actions provided with HP TestExec SL.

Appnotes Contains subdirectories and files for online application notes

Bitmaps Contains files for graphics used in various places throughou
the help project. Also contains subdirectory “Toolbar” that
contains graphics for the icons in HP TestExec SL’s toolbar.

Commands Contains topics for each of the commands that appear in
HP TestExec SL’s menu bar and submenus invoked from the
menu bar. These topics have context-sensitive links to menu
items and toolbar icons in HP TestExec SL.

Examples Contains topics for code samples and such.
 107

Customizing Online Help

How Do I Customize Online Help?

r

hat

s

g.,

RoboHELP® comes with documentation that describes how to create o
modify online help. Another potential source of information about online
help is the documentation that comes with software development tools t
include the Microsoft help compiler, such as Visual C++. Or, you can
purchase any of the various books that have been written about Window
help.

Note If you use RoboHELP®, you may need to modify its project options—e.
the path to graphics files used in online help—to make the help project
compile correctly on your system’s directory structure.

Forms Contains topics for the various windows and dialog boxes.
These topics have context-sensitive links to dialog boxes and
windows that appear in HP TestExec SL.

Glossary Contains topics for the glossary of terms.

Misc Contains global topics or topics that do not readily fit into the
other categories, such descriptions of HP TestExec SL’s
security features.

Reference Contains subdirectories that contain topics that describe the
syntax of the APIs.

Testplan Contains topics about working with testplans.

Tests Contains topics about working with tests.

Topology Contains topics about working with switching topology.
108

Index

A
action

for use with operator interfaces, 57
used to prompt system operators, 57

automation interface, 12
creating in Visual C++, 76
typical scenario, 12
typical tasks for, 13

automation interface created in Visual
C++

dealing with problems that arise
during testing, 81

displaying messages to user interface,
79

generating repair information, 80
LAN communications, 81
monitoring test results, 78
responding to keyboard & mouse

commands, 79
signaling downstream devices, 81
using a bar code reader with, 78
using datalogging with, 81
writing repair tickets, 80

B
bar code

changing the processing of, 64
parsing into a UUT type & serial

number, 64
bar code reader

changing how bar codes are
processed, 64

overview of using with operator
interfaces, 63

parsing bar codes in operator
interfaces created in Visual Basic,
48

sample bar codes used to test bar code
readers, 66

testing, 66
typical characteristics of, 64
using to automatically load testplans

in an operator interface, 67
using with an automation interface

created in Visual C++, 78

C
concurrent testing, 42
customization

customizing datalogging, 104
customizing operator interfaces

created in Visual Basic, 16
customizing operator interfaces

created in Visual C++, 67
customizing the online help, 106

D
datalogging

format for spreadsheet-compatible log
data, 102

specifying what appears in log data for
spreadsheets, 104

which data items are logged, 100

E
event

associated with testplans, 26
associated with tests, 29
in HP TestExec SL control, 26

H
hardware handler

creating, 84
interacting with an operator interface

created in Visual Basic, 41
using to monitor the status of

hardware, 85
help

customizing online help, 106
online help for the HP TestExec SL

control, 22
HP TestExec SL control

adding to a Visual Basic project, 20
events, 26
getting online help for, 22
methods, 24
states, 24
Index-2

L
language

adding language support for a new
control to an operator interface
created in Visual Basic, 54

adding language support for a new
message to an operator interface
created in Visual Basic, 55

adding support for a new language to
an operator interface created in
Visual Basic, 51

changing for operator interface
created in Visual Basic, 48

M
method

in HP TestExec SL control, 24

O
online help

customizing, 106
operator interface, 2

actions provided for use with, 57
appearance of, 3
associating testplans & UUTs with, 67
best way to create, 3
creating in Visual Basic, 16
creating in Visual C++, 72
designing for usability, 3
reasons for customizing, 2
sample actions provided for testing &

debugging, 15
testing & debugging, 15
using breakpoints in Visual Basic

when debugging, 44
which programming languages are

supported for, 3
operator interface created in Visual

Basic, 16
See also "HP TestExec SL control"
accessing hardware resources from,

40
adding information to reports, 46

adding language support for a new
control, 54

adding language support for a new
message, 55

adding support for a new language, 51
changing the information that appears

in reports, 47
changing the language, 48
concurrent testing, 42
configuring, 44
controlling what appears in reports, 45
example of minimum code needed to

implement, 22
finding items in code, 22
hiding existing functionality of, 44
how it interacts with HP TestExec SL,

18
interacting with hardware handlers, 41
parsing bar codes, 48
samples provided by HP, 17
skills needed to customize, 18
user-defined message, 33
user-defined query, 38
user-defined response, 38

operator interface created in Visual
C++, 67

accessing global data from, 71
beginning a test cycle, 74
beginning when testplan name is

unknown, 75
displaying messages, 75
displaying name of current test, 75
displaying testplan & test timing, 75
how it requests service, 69
interacting with test sequencer, 71
overview of internal operation, 68
responding to a Run button, 73

P
parallel testing, 42

R
reusable documentation

customizing the online help, 106
Index-3

S
state

for operator interface created in Visual
Basic, 24

for operator interface created in Visual
C++, 69

T
test

events associated with, 29
testing more than one UUT at a time, 42
test-level event, 29

enabling & disabling, 30
testplan

associating with an operator interface,
67

events associated with, 26
prompting system operators from, 62
sample testplans used to test bar code

readers, 66
testplan-level event, 26

U
user-defined message, 33

reserved by HP, 40
user-defined query, 38
user-defined response, 38
UUT

associating with an operator interface,
67
Index-4

	1 Customizing the Operator Interface
	About Operator Interfaces
	What is an Operator Interface?
	Which Operator Interfaces are Provided?
	Why Customize an Operator Interface?
	Which Programming Languages Can I Use?
	What is the Best Way to Begin?
	What Should an Operator Interface Look Like?
	Overview
	Know Your Audience
	Keep the Appearance Simple
	What Level of Access Should Operators Have?
	Make the Layout Logical
	Interacting With Operators
	Overview
	Providing Useful Prompts & Status Information
	Minimizing Visual Clutter
	Making Messages Clear
	Preventing Common Errors Before They Occur
	Using Shortcuts to Accommodate Different Styles

	What About Multiple Languages?
	What About Testing the Operator Interface?

	About Automation Interfaces
	What is an Automation Interface?
	A Typical Scenario for an Automation Interface
	What Tasks Does an Automation Interface Do?

	Testing & Debugging an Operator Interface
	How Should I Test and Debug an Operator Interface?...
	Using Sample Actions to Exercise an Operator Inter...

	Operator Interfaces Created in Visual Basic
	What is the Standard Operator Interface in Visual ...
	How Much Visual Basic Do I Need to Know?
	How Does Visual Basic Interact with HP�TestExec SL...
	What is Inside the HP TestExec SL Control?
	Adding the HP TestExec SL Control to a Project
	Getting Online Help for the Control
	Finding Items in Operator Interface Code
	What is the Minimum Operator Interface to Run a Te...
	Writing the Code for a Minimal Operator Interface
	Why the Minimal Operator Interface is Not Enough

	Understanding the HP�TestExec SL Control’s States ...
	Understanding the HP TestExec SL Control’s Events
	The Two Levels of Events
	Events Associated with Testplans
	Events Associated with Individual Tests
	About Test�Level Events
	Miscellaneous Events

	Using the HP TestExec SL Control’s Events

	Understanding User-Defined Messages
	Why Pass Information Between Processes?
	Passing Information Between Processes
	User�Defined Messages Reserved by Hewlett�Packard

	Accessing Hardware Resources from an Operator Inte...
	When Do Operator Interfaces Access Hardware Resour...
	Accessing the Hardware Resources

	What About Concurrent Testing?
	Miscellaneous Notes
	Changing or Enhancing Existing Functionality
	Changing the Configuration of an Operator Interfac...
	A Quick Way to Hide Existing Functionality
	Controlling the Information That Appears in Report...
	Accessing the Default Information
	What if Reports Need Additional Information?
	What if Reports Need Different Information?

	Changing the Language
	Which Languages Can I Use?
	Changing the Default Language
	Switching Among the Built-In Languages
	How Does Multi�Language Support Work?
	What About Languages That Are Not Built In?
	Adding Language Support for a New Control
	Adding Language Support for a New Message

	Prompting a System Operator from HP TestExec SL
	Associating Testplans & UUTs with an Operator Inte...

	Using Peripherals with Operator Interfaces
	Which Peripherals are Supported?
	The “One Peripheral Per Form” Convention
	Using Bar Code Readers
	About Bar Code Readers
	Changing the Processing of Bar Codes
	Testing the Code for Bar Code Readers

	Operator Interfaces Created in Visual C++
	What is the Standard Operator Interface in Visual ...
	Inside an Operator Interface in Visual C++
	Overview
	How the Operator Interface Requests Service
	Accessing Global Data from the Operator Interface
	Interacting with the Test Sequencer

	Creating an Operator Interface in Visual C++
	Doing Specific Tasks with an Operator Interface in...
	Responding to a “Run” Button
	Beginning a Test Cycle
	Displaying the Name of the Current Test
	Displaying the Testplan and Test Timing
	Displaying Messages
	Beginning When the Testplan Name is Unknown

	Creating an Automation Interface in Visual C++
	Software Configuration for an Automation Interface...
	Choosing a Task Model in Windows
	Using a Bar Code Reader
	Monitoring Test Results
	Displaying Messages to the User Interface
	Responding to Keyboard and Mouse Commands
	Generating Repair Information
	Writing Repair Tickets
	Signaling Downstream Devices
	Datalogging
	LAN Communications
	Dealing with Problems

	2 Creating a Hardware Handler
	Writing a Hardware Handler
	Modeling Your Hardware
	Monitoring the Status of Hardware
	Creating a Project for the Hardware Handler
	Setting the Path for Libraries
	Setting the Path for Include Files
	Creating a New DLL Project
	Specifying the Project Settings
	Creating an Implementation File for the Hardware H...
	Writing the Routines for Functions in the Implemen...
	Updating Dependencies
	Verifying the Project’s Contents
	Compiling the Project
	Copying the DLL to Its Destination Directory

	3 Customizing Datalogging
	What Gets Logged?
	Using Log Data with a Spreadsheet
	What is the Format for Spreadsheet�Compatible Log ...
	Specifying What Appears in Log Data for Spreadshee...

	4 Customizing Online Help
	Why Should I Customize Online Help?
	How Do I Customize Online Help?

	Index

